Spaces:
Runtime error
Runtime error
File size: 4,034 Bytes
9d749c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import warnings
warnings.filterwarnings('ignore')
import librosa
import numpy as np
from PIL import Image
class Mel:
def __init__(
self,
x_res: int = 256,
y_res: int = 256,
sample_rate: int = 22050,
n_fft: int = 2048,
hop_length: int = 512,
top_db: int = 80,
):
"""Class to convert audio to mel spectrograms and vice versa.
Args:
x_res (int): x resolution of spectrogram (time)
y_res (int): y resolution of spectrogram (frequency bins)
sample_rate (int): sample rate of audio
n_fft (int): number of Fast Fourier Transforms
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
top_db (int): loudest in decibels
"""
self.x_res = x_res
self.y_res = y_res
self.sr = sample_rate
self.n_fft = n_fft
self.hop_length = hop_length
self.n_mels = self.y_res
self.slice_size = self.x_res * self.hop_length - 1
self.fmax = self.sr / 2
self.top_db = top_db
self.audio = None
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
"""Load audio.
Args:
audio_file (str): must be a file on disk due to Librosa limitation or
raw_audio (np.ndarray): audio as numpy array
"""
if audio_file is not None:
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
else:
self.audio = raw_audio
# Pad with silence if necessary.
if len(self.audio) < self.x_res * self.hop_length:
self.audio = np.concatenate([
self.audio,
np.zeros((self.x_res * self.hop_length - len(self.audio), ))
])
def get_number_of_slices(self) -> int:
"""Get number of slices in audio.
Returns:
int: number of spectograms audio can be sliced into
"""
return len(self.audio) // self.slice_size
def get_audio_slice(self, slice: int = 0) -> np.ndarray:
"""Get slice of audio.
Args:
slice (int): slice number of audio (out of get_number_of_slices())
Returns:
np.ndarray: audio as numpy array
"""
return self.audio[self.slice_size * slice:self.slice_size *
(slice + 1)]
def get_sample_rate(self) -> int:
"""Get sample rate:
Returns:
int: sample rate of audio
"""
return self.sr
def audio_slice_to_image(self, slice: int) -> Image.Image:
"""Convert slice of audio to spectrogram.
Args:
slice (int): slice number of audio to convert (out of get_number_of_slices())
Returns:
PIL Image: grayscale image of x_res x y_res
"""
S = librosa.feature.melspectrogram(
y=self.get_audio_slice(slice),
sr=self.sr,
n_fft=self.n_fft,
hop_length=self.hop_length,
n_mels=self.n_mels,
fmax=self.fmax,
)
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) +
0.5).astype(np.uint8)
image = Image.fromarray(bytedata)
return image
def image_to_audio(self, image: Image.Image) -> np.ndarray:
"""Converts spectrogram to audio.
Args:
image (PIL Image): x_res x y_res grayscale image
Returns:
audio (np.ndarray): raw audio
"""
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(image.height, image.width))
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
S = librosa.db_to_power(log_S)
audio = librosa.feature.inverse.mel_to_audio(
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length)
return audio
|