File size: 5,525 Bytes
050507e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import tensorflow as tf
import tensorflow.python.keras.backend as K
from tensorflow.python.eager import context
from tensorflow.python.ops import (
    gen_math_ops,
    math_ops,
    sparse_ops,
    standard_ops,
)


def l2normalize(v, eps=1e-12):
    return v / (tf.norm(v) + eps)


class ConvSN2D(tf.keras.layers.Conv2D):
    def __init__(self, filters, kernel_size, power_iterations=1, datatype=tf.float32, **kwargs):
        super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
        self.power_iterations = power_iterations
        self.datatype = datatype

    def build(self, input_shape):
        super(ConvSN2D, self).build(input_shape)

        if self.data_format == "channels_first":
            channel_axis = 1
        else:
            channel_axis = -1

        self.u = self.add_weight(
            self.name + "_u",
            shape=tuple([1, self.kernel.shape.as_list()[-1]]),
            initializer=tf.initializers.RandomNormal(0, 1),
            trainable=False,
            dtype=self.dtype,
        )

    def compute_spectral_norm(self, W, new_u, W_shape):
        for _ in range(self.power_iterations):

            new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
            new_u = l2normalize(tf.matmul(new_v, W))

        sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
        W_bar = W / sigma

        with tf.control_dependencies([self.u.assign(new_u)]):
            W_bar = tf.reshape(W_bar, W_shape)

        return W_bar

    def call(self, inputs):
        W_shape = self.kernel.shape.as_list()
        W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
        new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
        outputs = self._convolution_op(inputs, new_kernel)

        if self.use_bias:
            if self.data_format == "channels_first":
                outputs = tf.nn.bias_add(outputs, self.bias, data_format="NCHW")
            else:
                outputs = tf.nn.bias_add(outputs, self.bias, data_format="NHWC")
        if self.activation is not None:
            return self.activation(outputs)

        return outputs


class DenseSN(tf.keras.layers.Dense):
    def __init__(self, datatype=tf.float32, **kwargs):
        super(DenseSN, self).__init__(**kwargs)
        self.datatype = datatype

    def build(self, input_shape):
        super(DenseSN, self).build(input_shape)

        self.u = self.add_weight(
            self.name + "_u",
            shape=tuple([1, self.kernel.shape.as_list()[-1]]),
            initializer=tf.initializers.RandomNormal(0, 1),
            trainable=False,
            dtype=self.datatype,
        )

    def compute_spectral_norm(self, W, new_u, W_shape):
        new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
        new_u = l2normalize(tf.matmul(new_v, W))
        sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
        W_bar = W / sigma
        with tf.control_dependencies([self.u.assign(new_u)]):
            W_bar = tf.reshape(W_bar, W_shape)
        return W_bar

    def call(self, inputs):
        W_shape = self.kernel.shape.as_list()
        W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
        new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
        rank = len(inputs.shape)
        if rank > 2:
            outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
            if not context.executing_eagerly():
                shape = inputs.shape.as_list()
                output_shape = shape[:-1] + [self.units]
                outputs.set_shape(output_shape)
        else:
            inputs = math_ops.cast(inputs, self._compute_dtype)
            if K.is_sparse(inputs):
                outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
            else:
                outputs = gen_math_ops.mat_mul(inputs, new_kernel)
        if self.use_bias:
            outputs = tf.nn.bias_add(outputs, self.bias)
        if self.activation is not None:
            return self.activation(outputs)
        return outputs


class AddNoise(tf.keras.layers.Layer):
    def __init__(self, datatype=tf.float32, **kwargs):
        super(AddNoise, self).__init__(**kwargs)
        self.datatype = datatype

    def build(self, input_shape):
        self.b = self.add_weight(
            shape=[
                1,
            ],
            initializer=tf.keras.initializers.zeros(),
            trainable=True,
            name="noise_weight",
        )

    def call(self, inputs):
        rand = tf.random.normal(
            [tf.shape(inputs)[0], inputs.shape[1], inputs.shape[2], 1],
            mean=0.0,
            stddev=1.0,
            dtype=self.datatype,
        )
        output = inputs + self.b * rand
        return output


class PosEnc(tf.keras.layers.Layer):
    def __init__(self, datatype=tf.float32, **kwargs):
        super(PosEnc, self).__init__(**kwargs)
        self.datatype = datatype

    def call(self, inputs):
        pos = tf.repeat(
            tf.reshape(tf.range(inputs.shape[-3], dtype=tf.int32), [1, -1, 1, 1]),
            inputs.shape[-2],
            -2,
        )
        pos = tf.cast(tf.repeat(pos, tf.shape(inputs)[0], 0), self.dtype) / tf.cast(inputs.shape[-3], self.datatype)
        return tf.concat([inputs, pos], -1)  # [bs,1,hop,2]


def flatten_hw(x, data_format="channels_last"):
    if data_format == "channels_last":
        x = tf.transpose(x, perm=[0, 3, 1, 2])  # Convert to `channels_first`

    old_shape = tf.shape(x)