nanhsin commited on
Commit
d8a1b62
β€’
1 Parent(s): 981646f

Update to turing.py

Browse files
Files changed (1) hide show
  1. app.py +232 -135
app.py CHANGED
@@ -1,147 +1,244 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
-
5
- import aiohttp
6
  import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
9
-
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
-
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
-
20
-
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
 
28
 
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
37
-
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
-
43
-
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### βš™ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### πŸ˜” Something went wrong, please try a different URL!"
76
- return
77
 
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
 
81
- # build the results column
82
- results = pn.Column("##### πŸŽ‰ Here are the results!", img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
-
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
  )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import pandas as pd
4
+ from collections import defaultdict, Counter
5
+ import altair as alt
6
  import panel as pn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
 
9
+ def choices_to_df(choices, hue):
10
+ df = pd.DataFrame(choices, columns=['choices'])
11
+ df['hue'] = hue
12
+ df['hue'] = df['hue'].astype(str)
13
+ return df
 
 
14
 
15
+ def arrange_data():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ # Human Data
 
18
 
19
+ df = pd.read_csv('Project/2_scientific/ChatGPT-Behavioral-main/data/bomb_risk.csv')
20
+ df = df[df['Role'] == 'player']
21
+ df = df[df['gameType'] == 'bomb_risk']
22
+ df.sort_values(by=['UserID', 'Round'])
23
+
24
+ prefix_to_choices_human = defaultdict(list)
25
+ prefix_to_IPW = defaultdict(list)
26
+ prev_user = None
27
+ prev_move = None
28
+ prefix = ''
29
+ bad_user = False
30
+ for _, row in df.iterrows():
31
+ if bad_user: continue
32
+ if row['UserID'] != prev_user:
33
+ prev_user = row['UserID']
34
+ prefix = ''
35
+ bad_user = False
36
+
37
+ move = row['move']
38
+ if move < 0 or move > 100:
39
+ bad_users = True
40
+ continue
41
+ prefix_to_choices_human[prefix].append(move)
42
+
43
+ if len(prefix) == 0:
44
+ prefix_to_IPW[prefix].append(1)
45
+ elif prefix[-1] == '1':
46
+ prev_move = min(prev_move, 98)
47
+ prefix_to_IPW[prefix].append(1./(100 - prev_move))
48
+ elif prefix[-1] == '0':
49
+ prev_move = max(prev_move, 1)
50
+ prefix_to_IPW[prefix].append(1./(prev_move))
51
+ else: assert False
52
+
53
+ prev_move = move
54
+
55
+ prefix += '1' if row['roundResult'] == 'SAFE' else '0'
56
+
57
+
58
+ # Model Data
59
+
60
+ prefix_to_choices_model = defaultdict(lambda : defaultdict(list))
61
+ for model in ['ChatGPT-4', 'ChatGPT-3']:
62
+ if model == 'ChatGPT-4':
63
+ file_names = [
64
+ 'bomb_gpt4_2023_05_15-12_13_51_AM.json'
65
+ ]
66
+ elif model == 'ChatGPT-3':
67
+ file_names = [
68
+ 'bomb_turbo_2023_05_14-10_45_50_PM.json'
69
+ ]
70
+
71
+ choices = []
72
+ scenarios = []
73
+ for file_name in file_names:
74
+ with open(os.path.join('Project/2_scientific/ChatGPT-Behavioral-main/records', file_name), 'r') as f:
75
+ records = json.load(f)
76
+ choices += records['choices']
77
+ scenarios += records['scenarios']
78
+
79
+ assert len(scenarios) == len(choices)
80
+ print('loaded %i valid records' % len(scenarios))
81
+
82
+ prefix_to_choice = defaultdict(list)
83
+ prefix_to_result = defaultdict(list)
84
+ prefix_to_pattern = defaultdict(Counter)
85
+ wrong_sum = 0
86
+ for scenarios_tmp, choices_tmp in zip(scenarios, choices):
87
+
88
+ result = 0
89
+ for i, scenario in enumerate(scenarios_tmp):
90
+ prefix = tuple(scenarios_tmp[:i])
91
+ prefix = ''.join([str(x) for x in prefix])
92
+ choice = choices_tmp[i]
93
+
94
+ prefix_to_choice[prefix].append(choice)
95
+ prefix_to_pattern[prefix][tuple(choices_tmp[:-1])] += 1
96
+
97
+ prefix = tuple(scenarios_tmp[:i+1])
98
+ if scenario == 1:
99
+ result += choice
100
+ prefix_to_result[prefix].append(result)
101
+
102
+ print('# of wrong sum:', wrong_sum)
103
+ print('# of correct sum:', len(scenarios) - wrong_sum)
104
+
105
+ prefix_to_choices_model[model] = prefix_to_choice
106
+
107
+
108
+ # Arrange Data
109
+
110
+ round_dict = {'': [1, -1, -1],
111
+ '0': [2, 0, -1],
112
+ '1': [2, 1, -1],
113
+ '00': [3, 0, 0],
114
+ '01': [3, 0, 1],
115
+ '10': [3, 1, 0],
116
+ '11': [3, 1, 1]}
117
+
118
+ df_bomb_all = pd.DataFrame()
119
+
120
+ for prefix in round_dict:
121
+
122
+ df_bomb_human = choices_to_df(prefix_to_choices_human[prefix], hue='Human')
123
+ df_bomb_human['weight'] = prefix_to_IPW[prefix]
124
+
125
+ df_bomb_models = pd.concat([choices_to_df(
126
+ prefix_to_choices_model[model][prefix], hue=model
127
+ ) for model in prefix_to_choices_model]
128
+ )
129
+ df_bomb_models['weight'] = 1
130
+
131
+ df_bomb_temp = pd.concat([df_bomb_human, df_bomb_models])
132
+ df_bomb_temp['prefix'] = prefix
133
+
134
+ df_bomb_all = pd.concat([df_bomb_all, df_bomb_temp])
135
+
136
+ df_density = df_bomb_all.groupby(['hue', 'prefix'])['choices'].value_counts(normalize=True).unstack(fill_value=0).stack().reset_index()
137
+ df_density = df_density.rename(columns={'hue': 'Subject', 'choices': 'Boxes', 0: 'Density'})
138
+ df_density['Round'] = df_density['prefix'].apply(lambda x: round_dict[x][0])
139
 
140
+ return df_density
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
 
 
 
 
 
142
 
143
+ df_density = arrange_data()
144
+ alt.data_transformers.disable_max_rows()
 
 
 
145
 
146
+ # Enable Panel extensions
147
+ pn.extension(design='bootstrap')
148
+ pn.extension('vega')
149
+ template = pn.template.BootstrapTemplate(
150
+ title='Nan-Hsin Lin | SI649 Scientific Viz Project',
 
 
 
 
 
 
 
 
151
  )
152
 
153
+ # Define a function to create and return a plot
154
+ def create_plot(bomb_1, bomb_2):
155
+
156
+ bomb_1 = int(not bomb_1)
157
+ bomb_2 = int(not bomb_2)
158
+
159
+ selection = alt.selection_single(encodings=['color'], empty='none', value=3)
160
+ opacityCondition = alt.condition(selection, alt.value(1), alt.value(0.3))
161
+ range_ = ['#009FB7', '#FED766', '#FE4A49']
162
+
163
+ plot = alt.Chart(df_density).transform_filter(
164
+ (alt.datum.prefix == '') | (alt.datum.prefix == str(bomb_1)) | (alt.datum.prefix == str(bomb_1) + str(bomb_2))
165
+ ).mark_bar(opacity=0.5).encode(
166
+ x=alt.X('Boxes:Q',
167
+ bin=alt.Bin(maxbins=10),
168
+ title='Number of boxes opened',
169
+ axis=alt.Axis(ticks=False,
170
+ labelFontSize=11,
171
+ labelColor='#AAA7AD',
172
+ titleFontSize=12,
173
+ titleColor='#AAA7AD',
174
+ domain=False)),
175
+ y=alt.Y('Density:Q',
176
+ stack=None,
177
+ scale=alt.Scale(domain=[0, 1]),
178
+ axis=alt.Axis(format='.0%',
179
+ ticks=False,
180
+ tickCount=5,
181
+ labelFontSize=11,
182
+ labelColor='#AAA7AD',
183
+ titleFontSize=12,
184
+ titleColor='#AAA7AD',
185
+ domain=False,
186
+ grid=False)),
187
+ color=alt.Color('Round:N',
188
+ scale=alt.Scale(domain=[1, 2, 3], range=range_)),
189
+ row=alt.Row('Subject:N',
190
+ header=alt.Header(title=None, orient='top', labelFontSize=16),
191
+ sort='descending'),
192
+ tooltip=['Subject:N', 'Round:N', 'Boxes:Q', alt.Tooltip('Density:Q', format='.0%')]
193
+ ).properties(width=400, height=150
194
+ ).configure_view(strokeWidth=3, stroke='lightgrey'
195
+ ).configure_legend(
196
+ titleFontSize=12,
197
+ titleColor='#AAA7AD',
198
+ titleAnchor='middle',
199
+ titlePadding=8,
200
+ labelFontSize=12,
201
+ labelColor='#AAA7AD',
202
+ labelFontWeight='bold',
203
+ symbolOffset=20,
204
+ orient='none',
205
+ direction='horizontal',
206
+ legendX=120,
207
+ legendY=-90,
208
+ symbolSize=200
209
+ ).add_selection(selection).encode(
210
+ opacity=opacityCondition
211
+ )
212
+
213
+ return plot
214
+
215
+ # Create widgets
216
+ switch_1 = pn.widgets.Switch(name='Bomb in Round 1', value=True)
217
+ switch_2 = pn.widgets.Switch(name='Bomb in Round 2', value=True)
218
+
219
+ plot_widgets = pn.bind(create_plot, switch_1, switch_2)
220
+
221
+ # Combine everything in a Panel Column to create an app
222
+ maincol = pn.Column()
223
+ maincol.append(pn.Row(pn.layout.HSpacer(),
224
+ "### A Turing test of whether AI chatbots are behaviorally similar to humans",
225
+ pn.layout.HSpacer()))
226
+ maincol.append(pn.Row(pn.Spacer(width=100)))
227
+ maincol.append(pn.Row(pn.layout.HSpacer(),
228
+ "#### Bomb Risk Game: Human vs. ChatGPT-4 vs. ChatGPT-3",
229
+ pn.layout.HSpacer()))
230
+ maincol.append(pn.Row(pn.layout.HSpacer(),
231
+ "Bomb in Round 1", switch_1,
232
+ pn.Spacer(width=50),
233
+ "Bomb in Round 2", switch_2,
234
+ pn.layout.HSpacer()))
235
+ maincol.append(pn.Row(pn.layout.HSpacer(),
236
+ plot_widgets,
237
+ pn.layout.HSpacer()))
238
+ maincol.append(pn.Row(pn.layout.HSpacer(),
239
+ "**Fig 5.** ChatGPT-4 and ChatGPT-3 act as if they have particular risk preferences. Both have the same mode as human distribution in the first round or when experiencing favorable outcomes in the Bomb Risk Game. When experiencing negative outcomes, ChatGPT-4 remains consistent and risk-neutral, while ChatGPT-3 acts as if it becomes more risk-averse.",
240
+ pn.layout.HSpacer()))
241
+ template.main.append(maincol)
242
+
243
+ # set the app to be servable
244
+ template.servable(title="SI649 Scientific Viz Project")