Spaces:
Sleeping
Sleeping
File size: 1,392 Bytes
faecd0c 3bf1c8e 57e1e4b 3bf1c8e 57e1e4b ee17265 3bf1c8e be72466 3bf1c8e be72466 98fa539 3bf1c8e 57e1e4b 98fa539 57e1e4b 3bf1c8e 57e1e4b 98fa539 be72466 98fa539 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e ee17265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import gradio as gr
from openai import OpenAI
client = OpenAI(
base_url="https://ueecxhqta9umllae.us-east-1.aws.endpoints.huggingface.cloud/v1/",
api_key=os.environ.get("hf_token"),
)
def respond(
지자체,
제목,
질문,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "municipality", "content": 지자체}]
messages.append({"role": "title", "content": 제목})
messages.append({"role": "question", "content": 질문})
response = ""
chat_completion = client.chat.completions.create(
model="tgi",
messages=messages,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
for message in chat_completion:
token = message.choices[0].delta.content
response += token
yield response
demo = gr.Interface(
respond,
inputs=["textbox", "textbox", "textbox"],
outputs=["textbox"],
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.90,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|