Spaces:
Sleeping
Sleeping
File size: 2,036 Bytes
faecd0c 7aedff4 3bf1c8e 57e1e4b 3bf1c8e 7dc524e 57e1e4b 6401f5b 57e1e4b ee17265 7aedff4 3bf1c8e be72466 3bf1c8e 7aedff4 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e be72466 3bf1c8e ee17265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import os
import pickle
import gradio as gr
from openai import OpenAI
from kiwipiepy import Kiwi
tagger = Kiwi()
def tokenizer(t):
return [e.form for e in tagger.tokenize(t)]
client = OpenAI(
base_url="https://yo4x63mj3sbmgpwc.us-east-1.aws.endpoints.huggingface.cloud/v1/",
api_key=os.environ.get("hf_token"),
)
with open("./question_undetector.pkl", "rb") as f:
(vectorizer, model) = pickle.load(f)
def guard_question(question):
pred = model.predict(vectorizer.transform([question]))
if pred[0] == 1:
return True
else:
return False
def respond(
์ง์์ฒด,
์ ๋ชฉ,
์ง๋ฌธ,
max_tokens,
temperature,
top_p,
):
if guard_question(์ง๋ฌธ):
messages = [{"role": "municipality", "content": ์ง์์ฒด}]
messages.append({"role": "title", "content": ์ ๋ชฉ})
messages.append({"role": "question", "content": ์ง๋ฌธ})
response = ""
chat_completion = client.chat.completions.create(
model="tgi",
messages=messages,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
for message in chat_completion:
token = message.choices[0].delta.content
if token:
response += token
yield response
else:
yield "์ ๊ฐ ๋ตํ ์ ์๋ ์ง๋ฌธ์ด ์๋ ๊ฒ ๊ฐ์ต๋๋ค. ์ ๋ ๋ฏผ์ ๊ฒ์๊ธ์ ์ฒ๋ฆฌํ ์ ์์ด์."
demo = gr.Interface(
respond,
inputs=["textbox", "textbox", "textbox"],
outputs=["textbox"],
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.90,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|