File size: 5,627 Bytes
c63233e
6f2b708
c63233e
6f2b708
 
5abd884
6f2b708
5abd884
 
 
 
 
5c0a0b7
5abd884
 
 
 
7554959
 
 
 
 
 
5abd884
7554959
 
5abd884
9593b55
 
 
 
5abd884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f2b708
 
7554959
5abd884
7554959
5abd884
 
7554959
5abd884
 
 
 
 
 
 
 
 
6f2b708
5abd884
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1b028
5abd884
7c1b028
 
 
 
 
5abd884
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import datetime
import pandas as pd
import gradio as gr
import argilla as rg
import plotly.graph_objects as go
import plotly.colors as colors

client = rg.Argilla(
    api_url=os.getenv("ARGILLA_API_URL"), api_key=os.getenv("ARGILLA_API_KEY")
)


def fetch_data(dataset_name: str, workspace: str):
    return client.datasets(dataset_name, workspace=workspace)


def get_progress(dataset: rg.Dataset) -> dict:
    dataset_progress = dataset.progress(with_users_distribution=True)

    total, completed = dataset_progress["total"], dataset_progress["completed"]
    progress = (completed / total) * 100 if total > 0 else 0

    return {
        "total": total,
        "annotated": completed,
        "progress": progress,
        "users": { 
            username: user_progress["completed"].get("submitted") 
            for username, user_progress in dataset_progress["users"].items() 
        } 
    }

def create_gauge_chart(progress):
    fig = go.Figure(
        go.Indicator(
            mode="gauge+number+delta",
            value=progress["progress"],
            title={"text": "Dataset Annotation Progress", "font": {"size": 24}},
            delta={"reference": 100, "increasing": {"color": "RebeccaPurple"}},
            number={"font": {"size": 40}, "valueformat": ".1f", "suffix": "%"},
            gauge={
                "axis": {"range": [None, 100], "tickwidth": 1, "tickcolor": "darkblue"},
                "bar": {"color": "deepskyblue"},
                "bgcolor": "white",
                "borderwidth": 2,
                "bordercolor": "gray",
                "steps": [
                    {"range": [0, progress["progress"]], "color": "royalblue"},
                    {"range": [progress["progress"], 100], "color": "lightgray"},
                ],
                "threshold": {
                    "line": {"color": "red", "width": 4},
                    "thickness": 0.75,
                    "value": 100,
                },
            },
        )
    )

    fig.update_layout(
        annotations=[
            dict(
                text=(
                    f"Total records: {progress['total']}<br>"
                    f"Annotated: {progress['annotated']} ({progress['progress']:.1f}%)<br>"
                    f"Remaining: {progress['total'] - progress['annotated']} ({100 - progress['progress']:.1f}%)"
                ),
                # x=0.5,
                # y=-0.2,
                showarrow=False,
                xref="paper",
                yref="paper",
                font=dict(size=16),
            )
        ],
    )

    fig.add_annotation(
        text=(
            f"Current Progress: {progress['progress']:.1f}% complete<br>"
            f"({progress['annotated']} out of {progress['total']} records annotated)"
        ),
        xref="paper",
        yref="paper",
        x=0.5,
        y=1.1,
        showarrow=False,
        font=dict(size=18),
        align="center",
    )

    return fig


def create_treemap(user_annotations, total_records):
    sorted_users = sorted(user_annotations.items(), key=lambda x: x[1], reverse=True)
    color_scale = colors.qualitative.Pastel + colors.qualitative.Set3

    labels, parents, values, text, user_colors = [], [], [], [], []

    for i, (user, contribution) in enumerate(sorted_users):
        percentage = (contribution / total_records) * 100
        labels.append(user)
        parents.append("Annotations")
        values.append(contribution)
        text.append(f"{contribution} annotations<br>{percentage:.2f}%")
        user_colors.append(color_scale[i % len(color_scale)])

    labels.append("Annotations")
    parents.append("")
    values.append(total_records)
    text.append(f"Total: {total_records} annotations")
    user_colors.append("#FFFFFF")

    fig = go.Figure(
        go.Treemap(
            labels=labels,
            parents=parents,
            values=values,
            text=text,
            textinfo="label+text",
            hoverinfo="label+text+value",
            marker=dict(colors=user_colors, line=dict(width=2)),
        )
    )

    fig.update_layout(
        title_text="User contributions to the total end dataset",
        height=500,
        margin=dict(l=10, r=10, t=50, b=10),
        paper_bgcolor="#F0F0F0",  # Light gray background
        plot_bgcolor="#F0F0F0",  # Light gray background
    )

    return fig


def update_dashboard():
    dataset = fetch_data(os.getenv("DATASET_NAME"), os.getenv("WORKSPACE"))
    progress = get_progress(dataset)
    
    gauge_chart = create_gauge_chart(progress)
    treemap = create_treemap(progress["users"], progress["total"])

    leaderboard_df = pd.DataFrame(
        list(progress["users"].items()), columns=["User", "Annotations"]
    )
    leaderboard_df = leaderboard_df.sort_values(
        "Annotations", ascending=False
    ).reset_index(drop=True)

    return gauge_chart, treemap, leaderboard_df


with gr.Blocks() as demo:
    gr.Markdown("# Argilla Dataset Dashboard")

    with gr.Row():
        gauge_output = gr.Plot(label="Overall Progress")
        treemap_output = gr.Plot(label="User contributions")

    with gr.Row():
        leaderboard_output = gr.Dataframe(
            label="Leaderboard", headers=["User", "Annotations"]
        )

    demo.load(
        update_dashboard,
        inputs=None,
        outputs=[gauge_output, treemap_output, leaderboard_output],
        every=5,
    )
    #gr.Button("Refresh").click(
    #    update_dashboard,
    #    inputs=None,
    #    outputs=[gauge_output, treemap_output, leaderboard_output],
    #)

if __name__ == "__main__":
    demo.launch()