Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from prettytable import PrettyTable
|
5 |
+
|
6 |
+
from pytorch_ie import AnnotationList, BinaryRelation, Span, LabeledSpan, Pipeline, TextDocument, annotation_field
|
7 |
+
from pytorch_ie.models import TransformerSpanClassificationModel, TransformerTextClassificationModel
|
8 |
+
from pytorch_ie.taskmodules import TransformerSpanClassificationTaskModule, TransformerRETextClassificationTaskModule
|
9 |
+
|
10 |
+
from typing import List
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class ExampleDocument(TextDocument):
|
15 |
+
entities: AnnotationList[LabeledSpan] = annotation_field(target="text")
|
16 |
+
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities")
|
17 |
+
|
18 |
+
|
19 |
+
model_name_or_path = "pie/example-ner-spanclf-conll03"
|
20 |
+
ner_taskmodule = TransformerSpanClassificationTaskModule.from_pretrained(model_name_or_path)
|
21 |
+
ner_model = TransformerSpanClassificationModel.from_pretrained(model_name_or_path)
|
22 |
+
|
23 |
+
ner_pipeline = Pipeline(model=ner_model, taskmodule=ner_taskmodule, device=-1, num_workers=0)
|
24 |
+
|
25 |
+
model_name_or_path = "pie/example-re-textclf-tacred"
|
26 |
+
re_taskmodule = TransformerRETextClassificationTaskModule.from_pretrained(model_name_or_path)
|
27 |
+
re_model = TransformerTextClassificationModel.from_pretrained(model_name_or_path)
|
28 |
+
|
29 |
+
re_pipeline = Pipeline(model=re_model, taskmodule=re_taskmodule, device=-1, num_workers=0)
|
30 |
+
|
31 |
+
|
32 |
+
def predict(text):
|
33 |
+
document = ExampleDocument(text)
|
34 |
+
|
35 |
+
ner_pipeline(document, predict_field="entities")
|
36 |
+
|
37 |
+
for entity in document.entities.predictions:
|
38 |
+
document.entities.append(entity)
|
39 |
+
|
40 |
+
re_pipeline(document, predict_field="relations")
|
41 |
+
|
42 |
+
t = PrettyTable()
|
43 |
+
t.field_names = ["head", "tail", "relation"]
|
44 |
+
t.align = "l"
|
45 |
+
for relation in document.relations.predictions:
|
46 |
+
t.add_row([str(relation.head), str(relation.tail), relation.label])
|
47 |
+
|
48 |
+
html = t.get_html_string(format=True)
|
49 |
+
html = (
|
50 |
+
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
|
51 |
+
+ html
|
52 |
+
+ "</div>"
|
53 |
+
)
|
54 |
+
|
55 |
+
return html
|
56 |
+
|
57 |
+
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=predict,
|
60 |
+
inputs="textbox",
|
61 |
+
outputs="html",
|
62 |
+
)
|
63 |
+
iface.launch()
|