Spaces:
Running
Running
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list | |
return response, history | |
import gradio as gr | |
interface = gr.Interface( | |
fn=predict, | |
theme="default", | |
css=".footer {display:none !important}", | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"], | |
) | |
if __name__ == '__main__': | |
interface.launch() | |