Spaces:
Runtime error
Runtime error
File size: 5,519 Bytes
39d5658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Preparing datasets for LAVILA
Please download the (selected) datasets from the official websites and place or sim-link them under `$LAVILA_ROOT/datasets/`.
```bash
$LAVILA_ROOT/datasets/
CharadesEgo/
EGTEA/
EK100/
Ego4D/
```
## Ego4D
1. Download [Ego4D videos](https://ego4d-data.org/docs/start-here/#download-data) (license is required).
2. Preprocess(TBA)
3. Download annotations
a. Download [egomcq.json](https://drive.google.com/file/d/1-5iRYf4BCHmj4MYQYFRMY4bhsWJUN3rW/view) to `$LAVILA_ROOT/datasets/Ego4D` (if you want to evaluate EgoMCQ).
b. Download [metadata for train split](https://dl.fbaipublicfiles.com/lavila/metadata/ego4d/ego4d_train.pkl) and [val split](https://dl.fbaipublicfiles.com/lavila/metadata/ego4d/ego4d_val.pkl) to `$LAVILA_ROOT/datasets/Ego4D` ((if you want to train LAVILA from scratch).
The fold should look like this:
```bash
$LAVILA_ROOT/datasets/
Ego4D/
ego4d_train.pkl
ego4d_val.pkl
egomcq.json
video_288px/
000786a7-3f9d-4fe6-bfb3-045b368f7d44.mp4/
0.mp4
300.mp4
000a3525-6c98-4650-aaab-be7d2c7b9402.mp4/
0.mp4
...
```
## EPIC-Kitchens-100 (EK-100)
1. Download annotations
```bash
# Assume that you are under `datasets/EK100/`
git clone https://github.com/epic-kitchens/epic-kitchens-100-annotations
```
2. Download videos.
a. For raw videos, please download them from [https://epic-kitchens.github.io/](https://epic-kitchens.github.io/).
b. (Recommended) The raw videos are huge (~1 TB). As an alternative, please check out a [resized version]().
3. (For EK-100 MIR)
a. Generate the relevancy matrix of train/val splits using [the official code](https://github.com/mwray/Joint-Part-of-Speech-Embeddings).
b. (Recommended) The generated result has some randomness. Therefore, we also provide the [replica of train split](https://dl.fbaipublicfiles.com/lavila/metadata/EK100/caption_relevancy_EPIC_100_retrieval_train.pkl) and [val split](https://dl.fbaipublicfiles.com/lavila/metadata/EK100/caption_relevancy_EPIC_100_retrieval_test.pkl). Please put them to the folder `$LAVILA_ROOT/datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/`.
The folder should look like this:
```bash
$LAVILA_ROOT/datasets/
EK100/
epic-kitchens-100-annotations/
EPIC_100_train.csv
EPIC_100_validation.csv
...
retrieval_annotations/relevancy/ # this appears if you do 3.
caption_relevancy_EPIC_100_retrieval_train.pkl
caption_relevancy_EPIC_100_retrieval_test.pkl
video_ht256px/
P01/
P01_01.MP4
P01_02.MP4
...
P01_19.MP4
P02/
P02_01.MP4
P02_02.MP4
...
P02_15.MP4
...
```
## CharadesEgo
1. Download annotations at [https://prior.allenai.org/projects/charades-ego](https://prior.allenai.org/projects/charades-ego).
```bash
### Annotations
# Assume that you are under `datasets/CharadesEgo/`
wget https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/CharadesEgo.zip
unzip CharadesEgo.zip && rm CharadesEgo.zip
```
2. Download data (~11GB) at [https://prior.allenai.org/projects/charades-ego](https://prior.allenai.org/projects/charades-ego).
```bash
### Data
wget https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/CharadesEgo_v1_480.tar
tar -xvf CharadesEgo_v1_480.tar # Or specify an external path using `-C` and sim-link it to here
rm CharadesEgo_v1_480.tar
```
3. (For fine-tuning CharadesEgo) Download two additional metadata files: [clip-level metadata (train)](https://dl.fbaipublicfiles.com/lavila/metadata/CharadesEgo/metadata_filtered_train.pkl) and [clip-level metadata (val)](https://dl.fbaipublicfiles.com/lavila/metadata/CharadesEgo/metadata_filtered_val.pkl). Put them to the folder `$LAVILA_ROOT/datasets/CharadesEgo/CharadesEgo/`.
The folder should look like this:
```bash
$LAVILA_ROOT/datasets/
CharadesEgo/
CharadesEgo/
CharadesEgo_v1_train_only1st.csv
CharadesEgo_v1_test_only1st.csv
...
metadata_filtered_train.pkl # this appears if you do 3.
metadata_filtered_val.pkl # this appears if you do 3.
CharadesEgo_v1_480/
005BU.mp4
005BUEGO.mp4
...
```
## EGTEA
1. Visit [https://cbs.ic.gatech.edu/fpv/](https://cbs.ic.gatech.edu/fpv/).
2. Download `TRIMMED_ACTION_CLIPS` (~20GB) and `ACTION_ANNOTATIONS` and untar to the current folder `$LAVILA_ROOT/datasets/EGTEA`.
```bash
unzip action_annotation.zip -d EGTEA/ && rm action_annotation.zip
```
The folder should look like this:
```bash
$LAVILA_ROOT/datasets/
EGTEA/
train_split1.txt
test_split1.txt
cropped_clips/
OP01-R01-PastaSalad/
OP01-R01-PastaSalad-1002316-1004005-F024051-F024101.mp4
OP01-R01-PastaSalad-1004110-1021110-F024057-F024548.mp4
OP01-R01-PastaSalad-1022590-1024050-F024539-F024581.mp4
...
OP01-R02-TurkeySandwich/
OP01-R02-TurkeySandwich-102320-105110-F002449-F002529.mp4
OP01-R02-TurkeySandwich-105440-106460-F002528-F002558.mp4
OP01-R02-TurkeySandwich-107332-133184-F002513-F003259.mp4
...
...
```
|