Spaces:
Runtime error
Runtime error
File size: 18,420 Bytes
39d5658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import numpy as np
import os.path as osp
import time
from collections import OrderedDict
import pandas as pd
import torch
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from sklearn.metrics import confusion_matrix
from lavila.data import datasets
from lavila.data.video_transforms import Permute, SpatialCrop, TemporalCrop
from lavila.models import models
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation import accuracy, get_mean_accuracy
from lavila.utils.evaluation_egomcq import egomcq_accuracy_metrics
from lavila.utils.evaluation_ek100mir import (calculate_k_counts, calculate_IDCG, calculate_mAP, calculate_nDCG)
from lavila.utils.evaluation_charades import charades_map
from lavila.utils.preprocess import generate_label_map, generate_tokenizer
def get_args_parser():
parser = argparse.ArgumentParser(description='LAVILA 0-shot evaluations', add_help=False)
parser.add_argument('--dataset', default='ek100_mir', type=str,
choices=['ek100_cls', 'ek100_mir', 'charades_ego', 'egtea', 'ego4d_mcq'])
parser.add_argument('--root',
default='datasets/EK100/video_ht256px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata-val',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv',
type=str, help='path to metadata file (val set)')
parser.add_argument('--relevancy-path',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl',
type=str, help='path to relevancy matrix (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--num-crops', default=1, type=int, help='number of crops in transforms')
parser.add_argument('--num-clips', default=1, type=int, help='number of clips (for untrimmed videos, eg. Charades)')
parser.add_argument('--clip-length', default=4, type=int, help='clip length')
parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
parser.add_argument('--batch-size', default=16, type=int, help='batch_size')
parser.add_argument('--cls-use-template', action='store_true', help='use prompt in 0-shot classification')
parser.add_argument('--print-freq', default=100, type=int)
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
parser.add_argument('--use-half', action='store_true')
return parser
def main(args):
if args.resume:
ckpt_path = args.resume
elif osp.isfile(osp.join(args.output_dir, 'checkpoint_best.pt')):
ckpt_path = osp.join(args.output_dir, 'checkpoint_best.pt')
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
# create model
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print('=> creating model: {}'.format(old_args.model))
model = getattr(models, old_args.model)(
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
gated_xattn=False if 'gated_xattn' not in old_args else old_args.gated_xattn,
timesformer_gated_xattn=False if 'timesformer_gated_xattn' not in old_args else old_args.timesformer_gated_xattn,
timesformer_freeze_space=False if 'timesformer_freeze_space' not in old_args else old_args.timesformer_freeze_space,
freeze_lm_vclm=False if 'freeze_lm_vclm' not in old_args else old_args.freeze_lm_vclm,
freeze_visual_vclm=False if 'freeze_visual_vclm' not in old_args else old_args.freeze_visual_vclm,
num_frames=args.clip_length,
drop_path_rate=0,
)
model.cuda()
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {}, best_metric = {})".format(args.resume, ckpt['epoch'], ckpt['best_acc1']))
torch.backends.cudnn.benchmark = True
if args.dataset in ['ek100_cls', 'charades_ego', 'egtea']:
labels, mapping_vn2act = generate_label_map(args.dataset)
else:
mapping_vn2act = None
tokenizer = generate_tokenizer(old_args.model)
crop_size = 224 if '336PX' not in old_args.model else 336
if args.num_crops == 1 and args.num_clips == 1:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
else:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
TemporalCrop(frames_per_clip=args.clip_length, stride=args.clip_length),
SpatialCrop(crop_size=crop_size, num_crops=args.num_crops),
])
val_dataset = datasets.get_downstream_dataset(
val_transform, tokenizer, args, subset='val', label_mapping=mapping_vn2act,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
if args.cls_use_template:
templates = ['#C C {}', '#C {}']
else:
templates = ['{}']
if args.dataset in ['ek100_cls', 'charades_ego', 'egtea']:
preds, targets = validate_zeroshot(val_loader, templates, labels, model, tokenizer)
if args.dataset == 'ek100_cls':
if args.use_half:
preds = preds.float()
top1, top5 = accuracy(preds, targets, topk=(1, 5))
print('top1 = {:.3f}'.format(top1.item()))
print('top5 = {:.3f}'.format(top5.item()))
elif args.dataset == 'charades_ego':
preds, targets = preds.numpy(), targets.numpy()
m_ap, _, _ = charades_map(preds, targets)
print('mAP = {:.3f}'.format(m_ap))
elif args.dataset == 'egtea':
preds, targets = preds.numpy(), targets.numpy()
print(preds.shape, targets.shape)
cm = confusion_matrix(targets, preds.argmax(axis=1))
mean_class_acc, acc = get_mean_accuracy(cm)
print('Mean Acc. = {:.3f}, Top-1 Acc. = {:.3f}'.format(mean_class_acc, acc))
if args.dataset == 'ek100_mir':
val_dataset = datasets.VideoCaptionDatasetCLIP(
'ek100_mir',
args.root,
args.metadata_val,
transform=val_transform, is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False
)
similarity_matrix = get_similarity_matrix(val_loader, model, print_freq=args.print_freq, use_half=args.use_half)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv(args.metadata_val).values[:, 0]
text_id = pd.read_csv(args.metadata_val.replace("test.csv", "test_sentence.csv")).values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
print(similarity_matrix.shape)
rel_matrix = pd.read_pickle(args.relevancy_path)
vis_map = calculate_mAP(similarity_matrix, rel_matrix)
txt_map = calculate_mAP(similarity_matrix.T, rel_matrix.T)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, (vis_map + txt_map) / 2))
vis_k_counts = calculate_k_counts(rel_matrix)
txt_k_counts = calculate_k_counts(rel_matrix.T)
vis_IDCG = calculate_IDCG(rel_matrix, vis_k_counts)
txt_IDCG = calculate_IDCG(rel_matrix.T, txt_k_counts)
vis_nDCG = calculate_nDCG(similarity_matrix, rel_matrix, k_counts=vis_k_counts, IDCG=vis_IDCG)
txt_nDCG = calculate_nDCG(similarity_matrix.T, rel_matrix.T, k_counts=txt_k_counts, IDCG=txt_IDCG)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_nDCG, txt_nDCG, (vis_nDCG + txt_nDCG) / 2))
if args.dataset == 'ego4d_mcq':
val_dataset = datasets.VideoCaptionDatasetMCQ(
args.dataset,
args.root,
args.metadata_val,
transform=val_transform, is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False
)
validate_mcq(val_loader, model, use_half=args.use_half)
def validate_zeroshot(val_loader, templates, labels, model, tokenizer):
model.eval()
if args.use_half:
model = model.half()
all_outputs = []
all_targets = []
all_vis_features = []
print('=> encoding captions')
with torch.no_grad():
text_features = []
for label in labels:
if isinstance(label, list):
texts = [tmpl.format(lbl) for tmpl in templates for lbl in label]
else:
texts = [tmpl.format(label) for tmpl in templates]
texts = tokenizer(texts)
if isinstance(texts, tuple):
# Bert-style tokenizer will output both ids and mask
texts, masks = texts
texts = texts.cuda(non_blocking=True)
masks = masks.cuda(non_blocking=True)
else:
texts = texts.cuda(non_blocking=True)
masks = None
texts = texts.view(-1, 77).contiguous()
masks = masks.view(-1, 77).contiguous() if masks is not None else None
if masks is not None:
class_embeddings = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
class_embeddings = dist_utils.get_model(model).encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.mean(dim=0)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0)
print('=> start forwarding')
end_time = time.time()
for i, (images, target) in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
if isinstance(images, torch.Tensor):
images = images.cuda(non_blocking=True)
if args.use_half:
images = images.half()
target = target.cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
all_vis_features.append(image_features)
# cosine similarity as logits
logits_per_image = image_features @ text_features.t()
# logits_per_image = torch.softmax(logits_per_image, dim=1)
else:
target = target.cuda(non_blocking=True)
images_list = images
logits_all_clips = []
for images in images_list:
images = images.cuda(non_blocking=True)
if args.use_half:
images = images.half()
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
logits_per_image = image_features @ text_features.t()
logits_all_clips.append(logits_per_image)
logits_all_clips = torch.stack(logits_all_clips, dim=0)
logits_per_image = logits_all_clips.max(0).values
# logits_per_image = logits_all_clips.mean(0)
logits_per_image = torch.softmax(logits_per_image, dim=1)
all_outputs.append(logits_per_image.cpu())
all_targets.append(target.cpu())
return torch.cat(all_outputs), torch.cat(all_targets)
def get_similarity_matrix(val_loader, model, print_freq=100, use_half=False):
model.eval()
if use_half:
model = model.half()
all_text_embed = []
all_video_embed = []
with torch.no_grad():
print('=> encoding visual and textual')
for i, inputs in enumerate(val_loader):
if i % print_freq == 0:
print('finish batch {}/{}'.format(i, len(val_loader)))
frames = inputs[0].cuda(non_blocking=True)
if use_half:
frames = frames.half()
texts = inputs[1].cuda(non_blocking=True)
if len(inputs) == 4:
masks = inputs[2].cuda(non_blocking=True)
else:
masks = None
# encode images
image_features = dist_utils.get_model(model).encode_image(frames)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
all_video_embed.append(image_features.cpu().numpy())
if texts.ndim == 3:
is_multiple_narrations = True
texts = texts.view(-1, texts.shape[-1])
else:
is_multiple_narrations = False
if masks is not None:
text_features = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
text_features = dist_utils.get_model(model).encode_text(texts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
all_text_embed.append(text_features.cpu().numpy())
all_text_embed = np.vstack(all_text_embed)
all_video_embed = np.vstack(all_video_embed)
similarity_matrix = np.matmul(all_video_embed, all_text_embed.T)
if is_multiple_narrations:
similarity_matrix = similarity_matrix.reshape(all_video_embed.shape[0], all_video_embed.shape[0], -1)
return similarity_matrix
def validate_mcq(val_loader, model, use_half=False):
model.eval()
if use_half:
model.half()
with torch.no_grad():
print('=> start forwarding')
all_preds = []
all_gts = []
all_types = []
end_time = time.time()
for i, inputs in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
texts_query = inputs[0].cuda(non_blocking=True)
frames_options = inputs[1].cuda(non_blocking=True)
if use_half:
frames_options = frames_options.half()
answer = inputs[3]
q_type = inputs[4]
if len(inputs) == 7:
masks_query = inputs[5].cuda(non_blocking=True)
else:
masks_query = None
batch_size = frames_options.shape[0]
frames_options = frames_options.view(-1, *frames_options.shape[2:])
image_features = dist_utils.get_model(model).encode_image(frames_options)
image_features = image_features.view(batch_size, -1, *image_features.shape[1:])
if masks_query is not None:
query_features = dist_utils.get_model(model).encode_text(texts_query, attention_mask=masks_query)
else:
query_features = dist_utils.get_model(model).encode_text(texts_query)
all_gts.append(answer)
all_types.append(q_type)
for j in range(batch_size):
similarity_matrix = torch.matmul(query_features[j], image_features[j].T)
similarity_matrix = similarity_matrix.cpu().detach()
all_preds.append(similarity_matrix)
all_preds = torch.stack(all_preds)
all_gts = torch.cat(all_gts)
all_types = torch.cat(all_types)
metrics = egomcq_accuracy_metrics(all_preds, all_gts, all_types)
print(metrics)
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila 0-shot evaluations', parents=[get_args_parser()])
args = parser.parse_args()
main(args)
|