diff --git "a/pipelines/pipeline_controlnet_sd_xl.py" "b/pipelines/pipeline_controlnet_sd_xl.py"
new file mode 100644--- /dev/null
+++ "b/pipelines/pipeline_controlnet_sd_xl.py"
@@ -0,0 +1,1932 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import PIL.Image
+import torch
+import torch.nn.functional as F
+from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
+
+from diffusers.utils.import_utils import is_invisible_watermark_available
+
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
+from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
+from diffusers.models.attention_processor import (
+    AttnProcessor2_0,
+    LoRAAttnProcessor2_0,
+    LoRAXFormersAttnProcessor,
+    XFormersAttnProcessor,
+)
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers
+from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
+from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
+from diffusers.models.attention_processor import AttnProcessor
+
+
+if is_invisible_watermark_available():
+    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
+
+from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
+import os
+from pipelines.inverted_ve_pipeline import CrossFrameAttnProcessor, ACTIVATE_LAYER_CANDIDATE, SharedAttentionProcessor, SharedAttentionProcessor_v2
+import gc
+
+logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
+
+
+EXAMPLE_DOC_STRING = """
+    Examples:
+        ```py
+        >>> # !pip install opencv-python transformers accelerate
+        >>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
+        >>> from diffusers.utils import load_image
+        >>> import numpy as np
+        >>> import torch
+
+        >>> import cv2
+        >>> from PIL import Image
+
+        >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
+        >>> negative_prompt = "low quality, bad quality, sketches"
+
+        >>> # download an image
+        >>> image = load_image(
+        ...     "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
+        ... )
+
+        >>> # initialize the models and pipeline
+        >>> controlnet_conditioning_scale = 0.5  # recommended for good generalization
+        >>> controlnet = ControlNetModel.from_pretrained(
+        ...     "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
+        ... )
+        >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
+        >>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
+        ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
+        ... )
+        >>> pipe.enable_model_cpu_offload()
+
+        >>> # get canny image
+        >>> image = np.array(image)
+        >>> image = cv2.Canny(image, 100, 200)
+        >>> image = image[:, :, None]
+        >>> image = np.concatenate([image, image, image], axis=2)
+        >>> canny_image = Image.fromarray(image)
+
+        >>> # generate image
+        >>> image = pipe(
+        ...     prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
+        ... ).images[0]
+        ```
+"""
+
+
+class StableDiffusionXLControlNetPipeline(
+    DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
+):
+    r"""
+    Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
+
+    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
+    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
+
+    The pipeline also inherits the following loading methods:
+        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+        - [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+        - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+
+    Args:
+        vae ([`AutoencoderKL`]):
+            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
+        text_encoder ([`~transformers.CLIPTextModel`]):
+            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
+        text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
+            Second frozen text-encoder
+            ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
+        tokenizer ([`~transformers.CLIPTokenizer`]):
+            A `CLIPTokenizer` to tokenize text.
+        tokenizer_2 ([`~transformers.CLIPTokenizer`]):
+            A `CLIPTokenizer` to tokenize text.
+        unet ([`UNet2DConditionModel`]):
+            A `UNet2DConditionModel` to denoise the encoded image latents.
+        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
+            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
+            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
+            additional conditioning.
+        scheduler ([`SchedulerMixin`]):
+            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
+            Whether the negative prompt embeddings should always be set to 0. Also see the config of
+            `stabilityai/stable-diffusion-xl-base-1-0`.
+        add_watermarker (`bool`, *optional*):
+            Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
+            watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
+            watermarker is used.
+    """
+    # leave controlnet out on purpose because it iterates with unet
+    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
+    _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
+
+    def __init__(
+        self,
+        vae: AutoencoderKL,
+        text_encoder: CLIPTextModel,
+        text_encoder_2: CLIPTextModelWithProjection,
+        tokenizer: CLIPTokenizer,
+        tokenizer_2: CLIPTokenizer,
+        unet: UNet2DConditionModel,
+        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
+        scheduler: KarrasDiffusionSchedulers,
+        force_zeros_for_empty_prompt: bool = True,
+        add_watermarker: Optional[bool] = None,
+    ):
+        super().__init__()
+
+        if isinstance(controlnet, (list, tuple)):
+            controlnet = MultiControlNetModel(controlnet)
+
+        self.register_modules(
+            vae=vae,
+            text_encoder=text_encoder,
+            text_encoder_2=text_encoder_2,
+            tokenizer=tokenizer,
+            tokenizer_2=tokenizer_2,
+            unet=unet,
+            controlnet=controlnet,
+            scheduler=scheduler,
+        )
+        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
+        self.control_image_processor = VaeImageProcessor(
+            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
+        )
+        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
+
+        self.default_sample_size = self.unet.config.sample_size
+
+
+        if add_watermarker:
+            self.watermark = StableDiffusionXLWatermarker()
+        else:
+            self.watermark = None
+
+        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
+    def enable_vae_slicing(self):
+        r"""
+        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+        """
+        self.vae.enable_slicing()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
+    def disable_vae_slicing(self):
+        r"""
+        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+        computing decoding in one step.
+        """
+        self.vae.disable_slicing()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
+    def enable_vae_tiling(self):
+        r"""
+        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+        processing larger images.
+        """
+        self.vae.enable_tiling()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
+    def disable_vae_tiling(self):
+        r"""
+        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+        computing decoding in one step.
+        """
+        self.vae.disable_tiling()
+
+
+    @property
+    def do_classifier_free_guidance(self):
+        return self._guidance_scale > 1
+
+    
+    
+    
+    
+    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
+    def encode_prompt(
+        self,
+        prompt: str,
+        prompt_2: Optional[str] = None,
+        device: Optional[torch.device] = None,
+        num_images_per_prompt: int = 1,
+        do_classifier_free_guidance: bool = True,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        lora_scale: Optional[float] = None,
+        clip_skip: Optional[int] = None,
+    ):
+        r"""
+        Encodes the prompt into text encoder hidden states.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                prompt to be encoded
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders
+            device: (`torch.device`):
+                torch device
+            num_images_per_prompt (`int`):
+                number of images that should be generated per prompt
+            do_classifier_free_guidance (`bool`):
+                whether to use classifier free guidance or not
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+                If not provided, pooled text embeddings will be generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+                input argument.
+            lora_scale (`float`, *optional*):
+                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+        """
+        device = device or self._execution_device
+
+        # set lora scale so that monkey patched LoRA
+        # function of text encoder can correctly access it
+        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
+            self._lora_scale = lora_scale
+
+            # dynamically adjust the LoRA scale
+            if self.text_encoder is not None:
+                if not USE_PEFT_BACKEND:
+                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
+                else:
+                    scale_lora_layers(self.text_encoder, lora_scale)
+
+            if self.text_encoder_2 is not None:
+                if not USE_PEFT_BACKEND:
+                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
+                else:
+                    scale_lora_layers(self.text_encoder_2, lora_scale)
+
+        prompt = [prompt] if isinstance(prompt, str) else prompt
+
+        if prompt is not None:
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        # Define tokenizers and text encoders
+        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
+        text_encoders = (
+            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
+        )
+
+        if prompt_embeds is None:
+            prompt_2 = prompt_2 or prompt
+            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
+
+            # textual inversion: procecss multi-vector tokens if necessary
+            prompt_embeds_list = []
+            prompts = [prompt, prompt_2]
+            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    prompt = self.maybe_convert_prompt(prompt, tokenizer)
+
+                text_inputs = tokenizer(
+                    prompt,
+                    padding="max_length",
+                    max_length=tokenizer.model_max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                text_input_ids = text_inputs.input_ids
+                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+                    text_input_ids, untruncated_ids
+                ):
+                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
+                    logger.warning(
+                        "The following part of your input was truncated because CLIP can only handle sequences up to"
+                        f" {tokenizer.model_max_length} tokens: {removed_text}"
+                    )
+
+                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
+
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                pooled_prompt_embeds = prompt_embeds[0]
+                if clip_skip is None:
+                    prompt_embeds = prompt_embeds.hidden_states[-2]
+                else:
+                    # "2" because SDXL always indexes from the penultimate layer.
+                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
+
+                prompt_embeds_list.append(prompt_embeds)
+
+            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
+
+        # get unconditional embeddings for classifier free guidance
+        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
+        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
+            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
+            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
+        elif do_classifier_free_guidance and negative_prompt_embeds is None:
+            negative_prompt = negative_prompt or ""
+            negative_prompt_2 = negative_prompt_2 or negative_prompt
+
+            # normalize str to list
+            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
+            negative_prompt_2 = (
+                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
+            )
+
+            uncond_tokens: List[str]
+            if prompt is not None and type(prompt) is not type(negative_prompt):
+                raise TypeError(
+                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+                    f" {type(prompt)}."
+                )
+            elif batch_size != len(negative_prompt):
+                raise ValueError(
+                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+                    " the batch size of `prompt`."
+                )
+            else:
+                uncond_tokens = [negative_prompt, negative_prompt_2]
+
+            negative_prompt_embeds_list = []
+            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
+
+                max_length = prompt_embeds.shape[1]
+                uncond_input = tokenizer(
+                    negative_prompt,
+                    padding="max_length",
+                    max_length=max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                negative_prompt_embeds = text_encoder(
+                    uncond_input.input_ids.to(device),
+                    output_hidden_states=True,
+                )
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
+                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
+
+                negative_prompt_embeds_list.append(negative_prompt_embeds)
+
+            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
+
+        if self.text_encoder_2 is not None:
+            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+        else:
+            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+        bs_embed, seq_len, _ = prompt_embeds.shape
+        # duplicate text embeddings for each generation per prompt, using mps friendly method
+        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+        if do_classifier_free_guidance:
+            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+            seq_len = negative_prompt_embeds.shape[1]
+
+            if self.text_encoder_2 is not None:
+                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+            else:
+                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+            bs_embed * num_images_per_prompt, -1
+        )
+        if do_classifier_free_guidance:
+            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+                bs_embed * num_images_per_prompt, -1
+            )
+
+        if self.text_encoder is not None:
+            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+                # Retrieve the original scale by scaling back the LoRA layers
+                unscale_lora_layers(self.text_encoder, lora_scale)
+
+        if self.text_encoder_2 is not None:
+            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+                # Retrieve the original scale by scaling back the LoRA layers
+                unscale_lora_layers(self.text_encoder_2, lora_scale)
+
+        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+    def prepare_extra_step_kwargs(self, generator, eta):
+        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+        # and should be between [0, 1]
+
+        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        extra_step_kwargs = {}
+        if accepts_eta:
+            extra_step_kwargs["eta"] = eta
+
+        # check if the scheduler accepts generator
+        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        if accepts_generator:
+            extra_step_kwargs["generator"] = generator
+        return extra_step_kwargs
+
+    def check_inputs(
+        self,
+        prompt,
+        prompt_2,
+        image,
+        callback_steps,
+        negative_prompt=None,
+        negative_prompt_2=None,
+        prompt_embeds=None,
+        negative_prompt_embeds=None,
+        pooled_prompt_embeds=None,
+        negative_pooled_prompt_embeds=None,
+        controlnet_conditioning_scale=1.0,
+        control_guidance_start=0.0,
+        control_guidance_end=1.0,
+    ):
+        if (callback_steps is None) or (
+            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+        ):
+            raise ValueError(
+                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+                f" {type(callback_steps)}."
+            )
+
+        if prompt is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt_2 is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt is None and prompt_embeds is None:
+            raise ValueError(
+                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+            )
+        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
+            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
+
+        if negative_prompt is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+
+        if prompt_embeds is not None and negative_prompt_embeds is not None:
+            if prompt_embeds.shape != negative_prompt_embeds.shape:
+                raise ValueError(
+                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+                    f" {negative_prompt_embeds.shape}."
+                )
+
+        if prompt_embeds is not None and pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
+            )
+
+        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
+            )
+
+        # `prompt` needs more sophisticated handling when there are multiple
+        # conditionings.
+        if isinstance(self.controlnet, MultiControlNetModel):
+            if isinstance(prompt, list):
+                logger.warning(
+                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
+                    " prompts. The conditionings will be fixed across the prompts."
+                )
+
+        # Check `image`
+        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
+            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
+        )
+        if (
+            isinstance(self.controlnet, ControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, ControlNetModel)
+        ):
+            self.check_image(image, prompt, prompt_embeds)
+        elif (
+            isinstance(self.controlnet, MultiControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
+        ):
+            if not isinstance(image, list):
+                raise TypeError("For multiple controlnets: `image` must be type `list`")
+
+            # When `image` is a nested list:
+            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
+            elif any(isinstance(i, list) for i in image):
+                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
+            elif len(image) != len(self.controlnet.nets):
+                raise ValueError(
+                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
+                )
+
+            for image_ in image:
+                self.check_image(image_, prompt, prompt_embeds)
+        else:
+            assert False
+
+        # Check `controlnet_conditioning_scale`
+        if (
+            isinstance(self.controlnet, ControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, ControlNetModel)
+        ):
+            if not isinstance(controlnet_conditioning_scale, float):
+                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
+        elif (
+            isinstance(self.controlnet, MultiControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
+        ):
+            if isinstance(controlnet_conditioning_scale, list):
+                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
+                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
+            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
+                self.controlnet.nets
+            ):
+                raise ValueError(
+                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
+                    " the same length as the number of controlnets"
+                )
+        else:
+            assert False
+
+        if not isinstance(control_guidance_start, (tuple, list)):
+            control_guidance_start = [control_guidance_start]
+
+        if not isinstance(control_guidance_end, (tuple, list)):
+            control_guidance_end = [control_guidance_end]
+
+        if len(control_guidance_start) != len(control_guidance_end):
+            raise ValueError(
+                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
+            )
+
+        if isinstance(self.controlnet, MultiControlNetModel):
+            if len(control_guidance_start) != len(self.controlnet.nets):
+                raise ValueError(
+                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
+                )
+
+        for start, end in zip(control_guidance_start, control_guidance_end):
+            if start >= end:
+                raise ValueError(
+                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
+                )
+            if start < 0.0:
+                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
+            if end > 1.0:
+                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
+
+    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
+    def check_image(self, image, prompt, prompt_embeds):
+        image_is_pil = isinstance(image, PIL.Image.Image)
+        image_is_tensor = isinstance(image, torch.Tensor)
+        image_is_np = isinstance(image, np.ndarray)
+        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
+        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
+        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
+
+        if (
+            not image_is_pil
+            and not image_is_tensor
+            and not image_is_np
+            and not image_is_pil_list
+            and not image_is_tensor_list
+            and not image_is_np_list
+        ):
+            raise TypeError(
+                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
+            )
+
+        if image_is_pil:
+            image_batch_size = 1
+        else:
+            image_batch_size = len(image)
+
+        if prompt is not None and isinstance(prompt, str):
+            prompt_batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            prompt_batch_size = len(prompt)
+        elif prompt_embeds is not None:
+            prompt_batch_size = prompt_embeds.shape[0]
+
+        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
+            raise ValueError(
+                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
+            )
+
+    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
+    def prepare_image(
+        self,
+        image,
+        width,
+        height,
+        batch_size,
+        num_images_per_prompt,
+        device,
+        dtype,
+        do_classifier_free_guidance=False,
+        guess_mode=False,
+    ):
+        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
+        image_batch_size = image.shape[0]
+
+        if image_batch_size == 1:
+            repeat_by = batch_size
+        else:
+            # image batch size is the same as prompt batch size
+            repeat_by = num_images_per_prompt
+
+        image = image.repeat_interleave(repeat_by, dim=0)
+
+        image = image.to(device=device, dtype=dtype)
+
+        if do_classifier_free_guidance and not guess_mode:
+            image = torch.cat([image] * 2)
+
+        return image
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
+        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+        if isinstance(generator, list) and len(generator) != batch_size:
+            raise ValueError(
+                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+            )
+
+        if latents is None:
+            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+        else:
+            latents = latents.to(device)
+
+        # scale the initial noise by the standard deviation required by the scheduler
+        latents = latents * self.scheduler.init_noise_sigma
+        return latents
+
+    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
+    def _get_add_time_ids(
+        self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
+    ):
+        add_time_ids = list(original_size + crops_coords_top_left + target_size)
+
+        passed_add_embed_dim = (
+            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
+        )
+        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
+
+        if expected_add_embed_dim != passed_add_embed_dim:
+            raise ValueError(
+                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
+            )
+
+        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
+        return add_time_ids
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
+    def upcast_vae(self):
+        dtype = self.vae.dtype
+        self.vae.to(dtype=torch.float32)
+        use_torch_2_0_or_xformers = isinstance(
+            self.vae.decoder.mid_block.attentions[0].processor,
+            (
+                AttnProcessor2_0,
+                XFormersAttnProcessor,
+                LoRAXFormersAttnProcessor,
+                LoRAAttnProcessor2_0,
+            ),
+        )
+        # if xformers or torch_2_0 is used attention block does not need
+        # to be in float32 which can save lots of memory
+        if use_torch_2_0_or_xformers:
+            self.vae.post_quant_conv.to(dtype)
+            self.vae.decoder.conv_in.to(dtype)
+            self.vae.decoder.mid_block.to(dtype)
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
+    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
+        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
+
+        The suffixes after the scaling factors represent the stages where they are being applied.
+
+        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
+        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
+
+        Args:
+            s1 (`float`):
+                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
+                mitigate "oversmoothing effect" in the enhanced denoising process.
+            s2 (`float`):
+                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
+                mitigate "oversmoothing effect" in the enhanced denoising process.
+            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
+            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
+        """
+        if not hasattr(self, "unet"):
+            raise ValueError("The pipeline must have `unet` for using FreeU.")
+        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
+    def disable_freeu(self):
+        """Disables the FreeU mechanism if enabled."""
+        self.unet.disable_freeu()
+
+    @torch.no_grad()
+    @replace_example_docstring(EXAMPLE_DOC_STRING)
+    def __call__(
+        self,
+        prompt: Union[str, List[str]] = None,
+        prompt_2: Optional[Union[str, List[str]]] = None,
+        image: PipelineImageInput = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        num_inference_steps: int = 50,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[Union[str, List[str]]] = None,
+        negative_prompt_2: Optional[Union[str, List[str]]] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.FloatTensor] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
+        callback_steps: int = 1,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
+        guess_mode: bool = False,
+        control_guidance_start: Union[float, List[float]] = 0.0,
+        control_guidance_end: Union[float, List[float]] = 1.0,
+        original_size: Tuple[int, int] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Tuple[int, int] = None,
+        negative_original_size: Optional[Tuple[int, int]] = None,
+        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
+        negative_target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        **kwargs,
+    ):
+        r"""
+        The call function to the pipeline for generation.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders.
+            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
+                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
+                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
+                specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
+                accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
+                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
+                `init`, images must be passed as a list such that each element of the list can be correctly batched for
+                input to a single ControlNet.
+            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The height in pixels of the generated image. Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The width in pixels of the generated image. Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            num_inference_steps (`int`, *optional*, defaults to 50):
+                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+                expense of slower inference.
+            guidance_scale (`float`, *optional*, defaults to 5.0):
+                A higher guidance scale value encourages the model to generate images closely linked to the text
+                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
+                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
+                and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
+            num_images_per_prompt (`int`, *optional*, defaults to 1):
+                The number of images to generate per prompt.
+            eta (`float`, *optional*, defaults to 0.0):
+                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
+                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
+            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
+                generation deterministic.
+            latents (`torch.FloatTensor`, *optional*):
+                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
+                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+                tensor is generated by sampling using the supplied random `generator`.
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
+                provided, text embeddings are generated from the `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
+            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+                not provided, pooled text embeddings are generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
+                weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
+                argument.
+            output_type (`str`, *optional*, defaults to `"pil"`):
+                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+                plain tuple.
+            callback (`Callable`, *optional*):
+                A function that calls every `callback_steps` steps during inference. The function is called with the
+                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
+            callback_steps (`int`, *optional*, defaults to 1):
+                The frequency at which the `callback` function is called. If not specified, the callback is called at
+                every step.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
+                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
+                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
+                the corresponding scale as a list.
+            guess_mode (`bool`, *optional*, defaults to `False`):
+                The ControlNet encoder tries to recognize the content of the input image even if you remove all
+                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
+            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
+                The percentage of total steps at which the ControlNet starts applying.
+            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The percentage of total steps at which the ControlNet stops applying.
+            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
+                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
+                explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
+                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
+                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                For most cases, `target_size` should be set to the desired height and width of the generated image. If
+                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
+                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a target image resolution. It should be as same
+                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+
+        Examples:
+
+        Returns:
+            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
+                otherwise a `tuple` is returned containing the output images.
+        """
+        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
+
+        # align format for control guidance
+        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
+            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
+        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
+            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
+        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
+            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
+            control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
+                control_guidance_end
+            ]
+
+        # 1. Check inputs. Raise error if not correct
+        self.check_inputs(
+            prompt,
+            prompt_2,
+            image,
+            callback_steps,
+            negative_prompt,
+            negative_prompt_2,
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+            controlnet_conditioning_scale,
+            control_guidance_start,
+            control_guidance_end,
+        )
+
+        # 2. Define call parameters
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        device = self._execution_device
+        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+        # corresponds to doing no classifier free guidance.
+        do_classifier_free_guidance = guidance_scale > 1.0
+
+        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
+            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
+
+        global_pool_conditions = (
+            controlnet.config.global_pool_conditions
+            if isinstance(controlnet, ControlNetModel)
+            else controlnet.nets[0].config.global_pool_conditions
+        )
+        guess_mode = guess_mode or global_pool_conditions
+
+
+        # 3. Encode input prompt
+        text_encoder_lora_scale = (
+            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
+        )
+        (
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+        ) = self.encode_prompt(
+            prompt,
+            prompt_2,
+            device,
+            num_images_per_prompt,
+            do_classifier_free_guidance,
+            negative_prompt,
+            negative_prompt_2,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            lora_scale=text_encoder_lora_scale,
+            clip_skip=clip_skip,
+        )
+
+
+
+
+
+        # 4. Prepare image
+        if isinstance(controlnet, ControlNetModel):
+            image = self.prepare_image(
+                image=image,
+                width=width,
+                height=height,
+                batch_size=batch_size * num_images_per_prompt,
+                num_images_per_prompt=num_images_per_prompt,
+                device=device,
+                dtype=controlnet.dtype,
+                do_classifier_free_guidance=do_classifier_free_guidance,
+                guess_mode=guess_mode,
+            )
+            height, width = image.shape[-2:]
+        elif isinstance(controlnet, MultiControlNetModel):
+            images = []
+
+            for image_ in image:
+                image_ = self.prepare_image(
+                    image=image_,
+                    width=width,
+                    height=height,
+                    batch_size=batch_size * num_images_per_prompt,
+                    num_images_per_prompt=num_images_per_prompt,
+                    device=device,
+                    dtype=controlnet.dtype,
+                    do_classifier_free_guidance=do_classifier_free_guidance,
+                    guess_mode=guess_mode,
+                )
+
+                images.append(image_)
+
+            image = images
+            height, width = image[0].shape[-2:]
+        else:
+            assert False
+
+        # 5. Prepare timesteps
+        self.scheduler.set_timesteps(num_inference_steps, device=device)
+        timesteps = self.scheduler.timesteps
+
+        # 6. Prepare latent variables
+        num_channels_latents = self.unet.config.in_channels
+        latents = self.prepare_latents(
+            batch_size * num_images_per_prompt,
+            num_channels_latents,
+            height,
+            width,
+            prompt_embeds.dtype,
+            device,
+            generator,
+            latents,
+        )
+
+        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+        # 7.1 Create tensor stating which controlnets to keep
+        controlnet_keep = []
+        for i in range(len(timesteps)):
+            keeps = [
+                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
+                for s, e in zip(control_guidance_start, control_guidance_end)
+            ]
+            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
+
+        # 7.2 Prepare added time ids & embeddings
+        if isinstance(image, list):
+            original_size = original_size or image[0].shape[-2:]
+        else:
+            original_size = original_size or image.shape[-2:]
+        target_size = target_size or (height, width)
+
+        add_text_embeds = pooled_prompt_embeds
+        if self.text_encoder_2 is None:
+            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
+        else:
+            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
+
+        add_time_ids = self._get_add_time_ids(
+            original_size,
+            crops_coords_top_left,
+            target_size,
+            dtype=prompt_embeds.dtype,
+            text_encoder_projection_dim=text_encoder_projection_dim,
+        )
+
+        if negative_original_size is not None and negative_target_size is not None:
+            negative_add_time_ids = self._get_add_time_ids(
+                negative_original_size,
+                negative_crops_coords_top_left,
+                negative_target_size,
+                dtype=prompt_embeds.dtype,
+                text_encoder_projection_dim=text_encoder_projection_dim,
+            )
+        else:
+            negative_add_time_ids = add_time_ids
+
+        if do_classifier_free_guidance:
+            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
+            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
+
+        prompt_embeds = prompt_embeds.to(device)
+        add_text_embeds = add_text_embeds.to(device)
+        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+
+        # 8. Denoising loop
+        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+        is_unet_compiled = is_compiled_module(self.unet)
+        is_controlnet_compiled = is_compiled_module(self.controlnet)
+        is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
+        with self.progress_bar(total=num_inference_steps) as progress_bar:
+            for i, t in enumerate(timesteps):
+                # Relevant thread:
+                # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
+                if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
+                    torch._inductor.cudagraph_mark_step_begin()
+                # expand the latents if we are doing classifier free guidance
+                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
+
+                # controlnet(s) inference
+                if guess_mode and do_classifier_free_guidance:
+                    # Infer ControlNet only for the conditional batch.
+                    control_model_input = latents
+                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
+                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
+                    controlnet_added_cond_kwargs = {
+                        "text_embeds": add_text_embeds.chunk(2)[1],
+                        "time_ids": add_time_ids.chunk(2)[1],
+                    }
+                else:
+                    control_model_input = latent_model_input
+                    controlnet_prompt_embeds = prompt_embeds
+                    controlnet_added_cond_kwargs = added_cond_kwargs
+
+                if isinstance(controlnet_keep[i], list):
+                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
+                else:
+                    controlnet_cond_scale = controlnet_conditioning_scale
+                    if isinstance(controlnet_cond_scale, list):
+                        controlnet_cond_scale = controlnet_cond_scale[0]
+                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
+
+                down_block_res_samples, mid_block_res_sample = self.controlnet(
+                    control_model_input,
+                    t,
+                    encoder_hidden_states=controlnet_prompt_embeds,
+                    controlnet_cond=image,
+                    conditioning_scale=cond_scale,
+                    guess_mode=guess_mode,
+                    added_cond_kwargs=controlnet_added_cond_kwargs,
+                    return_dict=False,
+                )
+
+                if guess_mode and do_classifier_free_guidance:
+                    # Infered ControlNet only for the conditional batch.
+                    # To apply the output of ControlNet to both the unconditional and conditional batches,
+                    # add 0 to the unconditional batch to keep it unchanged.
+                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
+                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
+
+                ##############################################################
+
+            
+                for i in range(len(down_block_res_samples)):
+                    down_block_res_samples[i][0] = 0
+                    down_block_res_samples[i][num_images_per_prompt] = 0
+
+                mid_block_res_sample[0] = 0
+                mid_block_res_sample[num_images_per_prompt] = 0
+                ##############################################################
+
+                # predict the noise residual
+                noise_pred = self.unet(
+                    latent_model_input,
+                    t,
+                    encoder_hidden_states=prompt_embeds,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    down_block_additional_residuals=down_block_res_samples,
+                    mid_block_additional_residual=mid_block_res_sample,
+                    added_cond_kwargs=added_cond_kwargs,
+                    return_dict=False,
+                )[0]
+
+                # perform guidance
+                if do_classifier_free_guidance:
+                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+                    # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+                    if i < 3 and kwargs["use_advanced_sampling"]:
+                        noise_pred = noise_pred_uncond + 20.0 * (noise_pred_text - noise_pred_uncond)
+                        # noise_pred[0] = noise_pred_uncond[0] + self.guidance_scale * (noise_pred_text[0] - noise_pred_uncond[0])
+                    else:                            
+                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+
+                # compute the previous noisy sample x_t -> x_t-1
+                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+                # call the callback, if provided
+                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+                    progress_bar.update()
+                    if callback is not None and i % callback_steps == 0:
+                        step_idx = i // getattr(self.scheduler, "order", 1)
+                        callback(step_idx, t, latents)
+
+        # manually for max memory savings
+        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
+            self.upcast_vae()
+            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+        if not output_type == "latent":
+            # make sure the VAE is in float32 mode, as it overflows in float16
+            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
+
+            if needs_upcasting:
+                self.upcast_vae()
+                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+
+            # cast back to fp16 if needed
+            if needs_upcasting:
+                self.vae.to(dtype=torch.float16)
+        else:
+            image = latents
+
+        if not output_type == "latent":
+            # apply watermark if available
+            if self.watermark is not None:
+                image = self.watermark.apply_watermark(image)
+
+            image = self.image_processor.postprocess(image, output_type=output_type)
+
+        # Offload all models
+        self.maybe_free_model_hooks()
+
+        if not return_dict:
+            return (image,)
+
+        return StableDiffusionXLPipelineOutput(images=image)
+
+
+    @torch.no_grad()
+    # @replace_example_docstring(EXAMPLE_DOC_STRING)
+    def generated_ve_inference(
+        self,
+        prompt: Union[str, List[str]] = None,
+        prompt_2: Optional[Union[str, List[str]]] = None,
+        image: PipelineImageInput = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        num_inference_steps: int = 50,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[Union[str, List[str]]] = None,
+        negative_prompt_2: Optional[Union[str, List[str]]] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.FloatTensor] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
+        callback_steps: int = 1,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
+        guess_mode: bool = False,
+        control_guidance_start: Union[float, List[float]] = 0.0,
+        control_guidance_end: Union[float, List[float]] = 1.0,
+        original_size: Tuple[int, int] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Tuple[int, int] = None,
+        negative_original_size: Optional[Tuple[int, int]] = None,
+        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
+        negative_target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        **kwargs,
+    ):
+        r"""
+        The call function to the pipeline for generation.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders.
+            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
+                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
+                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
+                specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
+                accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
+                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
+                `init`, images must be passed as a list such that each element of the list can be correctly batched for
+                input to a single ControlNet.
+            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The height in pixels of the generated image. Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The width in pixels of the generated image. Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            num_inference_steps (`int`, *optional*, defaults to 50):
+                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+                expense of slower inference.
+            guidance_scale (`float`, *optional*, defaults to 5.0):
+                A higher guidance scale value encourages the model to generate images closely linked to the text
+                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
+                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
+                and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
+            num_images_per_prompt (`int`, *optional*, defaults to 1):
+                The number of images to generate per prompt.
+            eta (`float`, *optional*, defaults to 0.0):
+                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
+                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
+            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
+                generation deterministic.
+            latents (`torch.FloatTensor`, *optional*):
+                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
+                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+                tensor is generated by sampling using the supplied random `generator`.
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
+                provided, text embeddings are generated from the `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
+            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+                not provided, pooled text embeddings are generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
+                weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
+                argument.
+            output_type (`str`, *optional*, defaults to `"pil"`):
+                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+                plain tuple.
+            callback (`Callable`, *optional*):
+                A function that calls every `callback_steps` steps during inference. The function is called with the
+                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
+            callback_steps (`int`, *optional*, defaults to 1):
+                The frequency at which the `callback` function is called. If not specified, the callback is called at
+                every step.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
+                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
+                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
+                the corresponding scale as a list.
+            guess_mode (`bool`, *optional*, defaults to `False`):
+                The ControlNet encoder tries to recognize the content of the input image even if you remove all
+                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
+            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
+                The percentage of total steps at which the ControlNet starts applying.
+            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The percentage of total steps at which the ControlNet stops applying.
+            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
+                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
+                explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
+                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
+                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                For most cases, `target_size` should be set to the desired height and width of the generated image. If
+                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
+                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a target image resolution. It should be as same
+                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+
+        Examples:
+
+        Returns:
+            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
+                otherwise a `tuple` is returned containing the output images.
+        """
+        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
+
+        # align format for control guidance
+        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
+            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
+        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
+            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
+        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
+            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
+            control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
+                control_guidance_end
+            ]
+
+        # # 1. Check inputs. Raise error if not correct
+        # self.check_inputs(
+        #     prompt,
+        #     prompt_2,
+        #     image,
+        #     callback_steps,
+        #     negative_prompt,
+        #     negative_prompt_2,
+        #     prompt_embeds,
+        #     negative_prompt_embeds,
+        #     pooled_prompt_embeds,
+        #     negative_pooled_prompt_embeds,
+        #     controlnet_conditioning_scale,
+        #     control_guidance_start,
+        #     control_guidance_end,
+        # )
+
+        # 2. Define call parameters
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        device = self._execution_device
+        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+        # corresponds to doing no classifier free guidance.
+        do_classifier_free_guidance = guidance_scale > 1.0
+        self.clip_skip = clip_skip
+        self.guidance_scale = guidance_scale
+
+
+        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
+            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
+
+        global_pool_conditions = (
+            controlnet.config.global_pool_conditions
+            if isinstance(controlnet, ControlNetModel)
+            else controlnet.nets[0].config.global_pool_conditions
+        )
+        guess_mode = guess_mode or global_pool_conditions
+
+        # 3. Encode input prompt
+        lora_scale = (
+            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
+        )
+        (
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+        ) = self.encode_prompt(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            device=device,
+            num_images_per_prompt=num_images_per_prompt,
+            do_classifier_free_guidance=do_classifier_free_guidance,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            lora_scale=lora_scale,
+            clip_skip=self.clip_skip,
+        )
+
+        if kwargs['target_prompt'] is not None:
+            (
+                prompt_embeds_,
+                negative_prompt_embeds_,
+                pooled_prompt_embeds_,
+                negative_pooled_prompt_embeds_,
+            ) = self.encode_prompt(
+                prompt=kwargs['target_prompt'],
+                prompt_2=prompt_2,
+                device=device,
+                num_images_per_prompt=num_images_per_prompt,
+                do_classifier_free_guidance=do_classifier_free_guidance,
+                # negative_prompt=negative_prompt,
+                negative_prompt=None, #if kwargs["target_neg"] is None else kwargs["target_neg"],
+                # negative_prompt_2=negative_prompt_2,
+                negative_prompt_2=None,
+                prompt_embeds=None,
+                negative_prompt_embeds=None,
+                pooled_prompt_embeds=None,
+                negative_pooled_prompt_embeds=None,
+                lora_scale=lora_scale,
+                clip_skip=self.clip_skip,
+            )
+
+            prompt_embeds[1:] = prompt_embeds_[1:]
+            pooled_prompt_embeds[1:] = pooled_prompt_embeds_[1:]
+            if not kwargs['use_inf_negative_prompt']:
+                negative_prompt_embeds[1:] = negative_prompt_embeds_[1:]
+                negative_pooled_prompt_embeds[1:] = negative_pooled_prompt_embeds_[1:]
+
+
+        # 4. Prepare image
+        if isinstance(controlnet, ControlNetModel):
+            image = self.prepare_image(
+                image=image,
+                width=width,
+                height=height,
+                batch_size=batch_size * num_images_per_prompt,
+                num_images_per_prompt=num_images_per_prompt,
+                device=device,
+                dtype=controlnet.dtype,
+                do_classifier_free_guidance=do_classifier_free_guidance,
+                guess_mode=guess_mode,
+            )
+            height, width = image.shape[-2:]
+        elif isinstance(controlnet, MultiControlNetModel):
+            images = []
+
+            for image_ in image:
+                image_ = self.prepare_image(
+                    image=image_,
+                    width=width,
+                    height=height,
+                    batch_size=batch_size * num_images_per_prompt,
+                    num_images_per_prompt=num_images_per_prompt,
+                    device=device,
+                    dtype=controlnet.dtype,
+                    do_classifier_free_guidance=do_classifier_free_guidance,
+                    guess_mode=guess_mode,
+                )
+
+                images.append(image_)
+
+            image = images
+            height, width = image[0].shape[-2:]
+        else:
+            assert False
+
+        # 5. Prepare timesteps
+        self.scheduler.set_timesteps(num_inference_steps, device=device)
+        timesteps = self.scheduler.timesteps
+
+        # 6. Prepare latent variables
+        num_channels_latents = self.unet.config.in_channels
+        latents = self.prepare_latents(
+            batch_size * num_images_per_prompt,
+            num_channels_latents,
+            height,
+            width,
+            prompt_embeds.dtype,
+            device,
+            generator,
+            latents,
+        )
+
+        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+        # 7.1 Create tensor stating which controlnets to keep
+        controlnet_keep = []
+        for i in range(len(timesteps)):
+            keeps = [
+                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
+                for s, e in zip(control_guidance_start, control_guidance_end)
+            ]
+            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
+
+        # 7.2 Prepare added time ids & embeddings
+        if isinstance(image, list):
+            original_size = original_size or image[0].shape[-2:]
+        else:
+            original_size = original_size or image.shape[-2:]
+        target_size = target_size or (height, width)
+
+        add_text_embeds = pooled_prompt_embeds
+        if self.text_encoder_2 is None:
+            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
+        else:
+            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
+
+        add_time_ids = self._get_add_time_ids(
+            original_size,
+            crops_coords_top_left,
+            target_size,
+            dtype=prompt_embeds.dtype,
+            text_encoder_projection_dim=text_encoder_projection_dim,
+        )
+
+        if negative_original_size is not None and negative_target_size is not None:
+            negative_add_time_ids = self._get_add_time_ids(
+                negative_original_size,
+                negative_crops_coords_top_left,
+                negative_target_size,
+                dtype=prompt_embeds.dtype,
+                text_encoder_projection_dim=text_encoder_projection_dim,
+            )
+        else:
+            negative_add_time_ids = add_time_ids
+
+        if do_classifier_free_guidance:
+            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
+            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
+
+        prompt_embeds = prompt_embeds.to(device)
+        add_text_embeds = add_text_embeds.to(device)
+        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+
+        # 8. Denoising loop
+        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+        is_unet_compiled = is_compiled_module(self.unet)
+        is_controlnet_compiled = is_compiled_module(self.controlnet)
+        is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
+        with self.progress_bar(total=num_inference_steps) as progress_bar:
+            for i, t in enumerate(timesteps):
+                # Relevant thread:
+                # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
+                if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
+                    torch._inductor.cudagraph_mark_step_begin()
+                # expand the latents if we are doing classifier free guidance
+                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
+
+                # controlnet(s) inference
+                if guess_mode and do_classifier_free_guidance:
+                    # Infer ControlNet only for the conditional batch.
+                    control_model_input = latents
+                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
+                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
+                    controlnet_added_cond_kwargs = {
+                        "text_embeds": add_text_embeds.chunk(2)[1],
+                        "time_ids": add_time_ids.chunk(2)[1],
+                    }
+                else:
+                    control_model_input = latent_model_input
+                    controlnet_prompt_embeds = prompt_embeds
+                    controlnet_added_cond_kwargs = added_cond_kwargs
+
+                if isinstance(controlnet_keep[i], list):
+                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
+                else:
+                    controlnet_cond_scale = controlnet_conditioning_scale
+                    if isinstance(controlnet_cond_scale, list):
+                        controlnet_cond_scale = controlnet_cond_scale[0]
+                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
+                
+
+                down_block_res_samples, mid_block_res_sample = self.controlnet(
+                    control_model_input,
+                    t,
+                    encoder_hidden_states=controlnet_prompt_embeds,
+                    controlnet_cond=image,
+                    conditioning_scale=cond_scale,
+                    guess_mode=guess_mode,
+                    added_cond_kwargs=controlnet_added_cond_kwargs,
+                    return_dict=False,
+                )
+
+                if guess_mode and do_classifier_free_guidance:
+                    # Infered ControlNet only for the conditional batch.
+                    # To apply the output of ControlNet to both the unconditional and conditional batches,
+                    # add 0 to the unconditional batch to keep it unchanged.
+                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
+                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
+
+                ##############################################################
+
+            
+                for i in range(len(down_block_res_samples)):
+                    down_block_res_samples[i][0] = 0
+                    down_block_res_samples[i][num_images_per_prompt] = 0
+
+                mid_block_res_sample[0] = 0
+                mid_block_res_sample[num_images_per_prompt] = 0
+                ##############################################################
+
+                # predict the noise residual
+                noise_pred = self.unet(
+                    latent_model_input,
+                    t,
+                    encoder_hidden_states=prompt_embeds,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    down_block_additional_residuals=down_block_res_samples,
+                    mid_block_additional_residual=mid_block_res_sample,
+                    added_cond_kwargs=added_cond_kwargs,
+                    return_dict=False,
+                )[0]
+
+                # perform guidance
+                if do_classifier_free_guidance:
+                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+                    # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+                    if i < 3 and kwargs["use_advanced_sampling"]:
+                        noise_pred = noise_pred_uncond + 20.0 * (noise_pred_text - noise_pred_uncond)
+                        # noise_pred[0] = noise_pred_uncond[0] + self.guidance_scale * (noise_pred_text[0] - noise_pred_uncond[0])
+                    else:                            
+                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+
+                # compute the previous noisy sample x_t -> x_t-1
+                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+                # call the callback, if provided
+                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+                    progress_bar.update()
+                    if callback is not None and i % callback_steps == 0:
+                        step_idx = i // getattr(self.scheduler, "order", 1)
+                        callback(step_idx, t, latents)
+
+        # manually for max memory savings
+        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
+            self.upcast_vae()
+            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+        if not output_type == "latent":
+            # make sure the VAE is in float32 mode, as it overflows in float16
+            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
+
+            if needs_upcasting:
+                self.upcast_vae()
+                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+            # import pdb; pdb.set_trace()
+            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+
+            # cast back to fp16 if needed
+            if needs_upcasting:
+                self.vae.to(dtype=torch.float16)
+        else:
+            image = latents
+
+        if not output_type == "latent":
+            # apply watermark if available
+            if self.watermark is not None:
+                image = self.watermark.apply_watermark(image)
+            image = self.image_processor.postprocess(image, output_type=output_type)
+
+        # Offload all models
+        self.maybe_free_model_hooks()
+
+        if not return_dict:
+            return (image,)
+
+        return StableDiffusionXLPipelineOutput(images=image)
+
+
+    @torch.no_grad()
+    def activate_layer(self,
+                       activate_layer_indices,
+                       attn_map_save_steps=[],
+                       activate_step_indices = None,
+                       use_shared_attention = False,
+                       adain_queries=True,
+                       adain_keys=True,
+                       adain_values=False,
+                       ):
+        
+        
+        attn_procs = {}
+        activate_layer = []
+        str_activate_layer = ""
+        for activate_layer_index in activate_layer_indices:
+            activate_layer += ACTIVATE_LAYER_CANDIDATE[activate_layer_index[0]:activate_layer_index[1]]
+            str_activate_layer += str(activate_layer_index)
+
+        str_activate_step = ""
+        for activate_step_index in activate_step_indices:
+            str_activate_step += str(activate_step_index)
+
+        for name in self.unet.attn_processors.keys():
+            if name in activate_layer:
+                if not use_shared_attention:
+                    attn_procs[name] = CrossFrameAttnProcessor(unet_chunk_size=2, 
+                                                            attn_map_save_steps=attn_map_save_steps, 
+                                                            activate_step_indices=activate_step_indices)
+                else:
+
+                    activate_save_layer = [
+                        'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor',
+                        'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor',
+                        'up_blocks.0.attentions.1.transformer_blocks.0.attn1.processor',
+                        'up_blocks.0.attentions.0.transformer_blocks.0.attn1.processor',
+                        'mid_block.attentions.0.transformer_blocks.0.attn1.processor'
+                                           ]
+                    if name in activate_save_layer:
+                        attn_procs[name] = SharedAttentionProcessor_v2(    
+                                                            adain_keys=adain_keys,
+                                                            adain_queries=adain_queries,
+                                                            adain_values=adain_values,
+                                                            attn_map_save_steps = attn_map_save_steps,
+                                                            keys_scale=1.0,
+                                                            )
+                    else:
+                        attn_procs[name] = SharedAttentionProcessor(
+                                                                # unet_chunk_size=2, 
+                                                                # attn_map_save_steps=attn_map_save_steps, 
+                                                                # activate_step_indices=activate_step_indices,
+                                                                adain_keys=adain_keys,
+                                                                adain_queries=adain_queries,
+                                                                adain_values=adain_values,
+                                                                keys_scale=1.0,
+                                                                )
+            else :
+                attn_procs[name] = AttnProcessor()
+                
+        self.unet.set_attn_processor(attn_procs)
+    
+        return str_activate_layer, str_activate_step
+
+    @torch.no_grad()
+    def get_init_latent(self,
+                         precomputed_path,
+                         seed):
+        
+        
+        if not os.path.exists(precomputed_path):
+            os.makedirs(precomputed_path)
+
+        #search init latents in precomputed latents
+        init_latent_name = f'init_latent_{seed}.pt'
+        init_latent_path = os.path.join(precomputed_path, init_latent_name)
+
+
+
+        # 0. Default height and width to unet
+        height = self.default_sample_size * self.vae_scale_factor
+        width =self.default_sample_size * self.vae_scale_factor
+
+        num_channels_latents = self.unet.config.in_channels
+
+
+
+        if not os.path.exists(init_latent_path):
+            print(f'init_latent_{seed}.pt is not exist')
+            device= self._execution_device
+            generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
+
+
+            shape = (1, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+
+            init_latent = randn_tensor(shape, generator=generator, dtype = self.dtype, device=device)
+
+            torch.save(init_latent, init_latent_path)
+        else:
+            print(f'init_latent_{seed}.pt is exist')
+            init_latent = torch.load(init_latent_path)
+ 
+        return init_latent