Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import fire_network | |
import cv2 | |
# Possible Scales for multiscale inference | |
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25] | |
# Load net | |
state = torch.load('fire.pth', map_location='cpu') | |
state['net_params']['pretrained'] = None # no need for imagenet pretrained model | |
net = fire_network.init_network(**state['net_params']).to(device) | |
net.load_state_dict(state['state_dict']) | |
transform = transforms.Compose([ | |
transforms.Resize(1024), | |
transforms.ToTensor(), | |
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std']))) | |
]) | |
# which sf | |
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9] | |
col = plt.get_cmap('tab10') | |
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50): | |
im1_tensor = transform(im1) | |
im2_tensor = transform(im2) | |
im1_cv = cv2.imread(im1) | |
im2_cv = cv2.imread(im2) | |
# extract features | |
with torch.no_grad(): | |
output1 = net.get_superfeatures(im1.to(device), scales=scales) | |
feats1 = output1[0] | |
attns1 = output1[1] | |
strenghts1 = output1[2] | |
output2 = net.get_superfeatures(im2.to(device), scales=scales) | |
feats2 = output2[0] | |
attns2 = output2[1] | |
strenghts2 = output2[2] | |
print(feats1.shape) | |
print(attns1.shape) | |
print(strenghts1.shape) | |
# GRADIO APP | |
title = "Visualizing Super-features" | |
description = "TBD" | |
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>" | |
iface = gr.Interface( | |
fn=generate_matching_superfeatures, | |
inputs=[ | |
gr.inputs.Image(shape=(240, 240), type="pil"), | |
gr.inputs.Image(shape=(240, 240), type="pil"), | |
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=2, label="Scale"), | |
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=50, label="Binarizatio Threshold")], | |
outputs="plot", | |
enable_queue=True, | |
title=title, | |
description=description, | |
article=article, | |
examples=[["chateau_1.png", "chateau_2.png", 6, 50]], | |
) | |
iface.launch() | |