YannisK commited on
Commit
c9dadbf
·
1 Parent(s): d68e7f0
Files changed (1) hide show
  1. app.py +28 -15
app.py CHANGED
@@ -6,11 +6,10 @@ from how.networks import how_net
6
 
7
  import fire_network
8
 
 
9
 
10
  # Possible Scales for multiscale inference
11
- scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
12
- infer_opts = {"scales": scales, "features_num": 1000}
13
-
14
 
15
  # Load net
16
  state = torch.load('fire.pth', map_location='cpu')
@@ -18,28 +17,42 @@ state['net_params']['pretrained'] = None # no need for imagenet pretrained model
18
  net = fire_network.init_network(**state['net_params']).to(device)
19
  net.load_state_dict(state['state_dict'])
20
 
21
- transforms_ = transforms.Compose([
22
  transforms.Resize(1024),
23
  transforms.ToTensor(),
24
  transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
25
  ])
26
 
27
 
28
- # Wrapper
 
 
 
 
 
29
  def generate_matching_superfeatures(im1, im2, scale=6):
30
 
31
- # extract features
32
- with torch.no_grad():
33
- output1 = net.get_superfeatures(im1.to(device), scales=scales)
34
- feats1 = output1[0]
35
- attns1 = output1[1]
36
- strenghts1 = output1[2]
37
 
38
- output2 = net.get_superfeatures(im2.to(device), scales=scales)
39
- feats2 = output2[0]
40
- attns2 = output2[1]
41
- strenghts2 = output2[2]
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
45
 
 
6
 
7
  import fire_network
8
 
9
+ import cv2
10
 
11
  # Possible Scales for multiscale inference
12
+ scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
 
 
13
 
14
  # Load net
15
  state = torch.load('fire.pth', map_location='cpu')
 
17
  net = fire_network.init_network(**state['net_params']).to(device)
18
  net.load_state_dict(state['state_dict'])
19
 
20
+ transform = transforms.Compose([
21
  transforms.Resize(1024),
22
  transforms.ToTensor(),
23
  transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
24
  ])
25
 
26
 
27
+ # which sf
28
+ sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
29
+
30
+
31
+ col = plt.get_cmap('tab10')
32
+
33
  def generate_matching_superfeatures(im1, im2, scale=6):
34
 
35
+ im1_tensor = transform(im1)
36
+ im2_tensor = transform(im2)
 
 
 
 
37
 
38
+ im1_cv = cv2.imread(im1)
39
+ im2_cv = cv2.imread(im2)
 
 
40
 
41
+ # extract features
42
+ with torch.no_grad():
43
+ output1 = net.get_superfeatures(im1.to(device), scales=scales)
44
+ feats1 = output1[0]
45
+ attns1 = output1[1]
46
+ strenghts1 = output1[2]
47
+
48
+ output2 = net.get_superfeatures(im2.to(device), scales=scales)
49
+ feats2 = output2[0]
50
+ attns2 = output2[1]
51
+ strenghts2 = output2[2]
52
+
53
+ print(feats1.shape)
54
+ print(attns1.shape)
55
+ print(strenghts1.shape)
56
 
57
 
58