Spaces:
Runtime error
Runtime error
File size: 31,026 Bytes
cacafc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import json
import pickle
from argparse import ArgumentParser
from typing import List, Dict, Tuple
import clip
import numpy as np
import torch
import torch.nn.functional as F
from clip.model import CLIP
from transformers import CLIPTextModelWithProjection
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
from data_utils import collate_fn, PROJECT_ROOT, targetpad_transform
from loader import FashionIQDataset, CIRRDataset, CIRCODataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
from utils import extract_image_features, device, extract_pseudo_tokens_with_phi
torch.multiprocessing.set_sharing_strategy('file_system')
@torch.no_grad()
def fiq_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[torch.Tensor, List[str]]:
"""
Generates features predictions for the validation set of Fashion IQ.
"""
# Create data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
# Compute features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_captions']
flattened_captions: list = np.array(relative_captions).T.flatten().tolist()
input_captions = [
f"{flattened_captions[i].strip('.?, ')} and {flattened_captions[i + 1].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions_reversed = [
f"{flattened_captions[i + 1].strip('.?, ')} and {flattened_captions[i].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions = [
f"a photo of $ that {in_cap}" for in_cap in input_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
input_captions_reversed = [
f"a photo of $ that {in_cap}" for in_cap in input_captions_reversed]
tokenized_input_captions_reversed = clip.tokenize(input_captions_reversed, context_length=77).to(device)
text_features_reversed = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions_reversed,
batch_tokens)
predicted_features = F.normalize((F.normalize(text_features) + F.normalize(text_features_reversed)) / 2)
# predicted_features = F.normalize((text_features + text_features_reversed) / 2)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list
@torch.no_grad()
def fiq_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names = fiq_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list,
pseudo_tokens)
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
# Compute the distances
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Check if the target names are in the top 10 and top 50
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names)).reshape(len(target_names), -1))
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
return {'fiq_recall_at10': recall_at10,
'fiq_recall_at50': recall_at50}
@torch.no_grad()
def fiq_val_retrieval(dataset_path: str, dress_type: str, image_encoder, text_encoder, ref_names_list: List[str],
pseudo_tokens: torch.Tensor, preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative dataset
relative_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'relative', preprocess)
return fiq_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
@torch.no_grad()
def cirr_generate_val_predictions(clip_model: CLIPTextModelWithProjection, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_generate_val_predictions_with_phi(clip_model: CLIPTextModelWithProjection, phi, relative_val_dataset: Dataset, ref_names_list: List[str],
image_features: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
# we need to make batch_tokens with selected_image_features
selected_image_features = torch.vstack([image_features[ref_names_list.index(ref)] for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
context = clip_model.text_model.embeddings.token_embedding(tokenized_input_captions) + clip_model.text_model.embeddings.position_embedding(clip_model.text_model.embeddings.position_ids)
batch_tokens = phi(selected_image_features, context)
#batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list, pseudo_tokens)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_compute_val_metrics_with_phi(relative_val_dataset: Dataset, clip_model: CLIPTextModelWithProjection, phi, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], image_features: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions_with_phi(clip_model, phi, relative_val_dataset, ref_names_list, image_features)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: list, pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRRDataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRRDataset(dataset_path, 'val', 'relative', preprocess)
return cirr_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names,
ref_names_list, pseudo_tokens)
@torch.no_grad()
def circo_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[
torch.Tensor, List[str], list]:
"""
Generates features predictions for the validation set of CIRCO
"""
# Create the data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
gts_img_ids_list = []
# Compute the features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
gt_img_ids = batch['gt_img_ids']
gt_img_ids = np.array(gt_img_ids).T.tolist()
input_captions = [f"a photo of $ that {caption}" for caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
gts_img_ids_list.extend(gt_img_ids)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list, gts_img_ids_list
@torch.no_grad()
def circo_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names, gts_img_ids = circo_generate_val_predictions(clip_model, relative_val_dataset,
ref_names_list, pseudo_tokens)
ap_at5 = []
ap_at10 = []
ap_at25 = []
ap_at50 = []
recall_at5 = []
recall_at10 = []
recall_at25 = []
recall_at50 = []
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
for predicted_feature, target_name, gt_img_ids in tqdm(zip(predicted_features, target_names, gts_img_ids)):
gt_img_ids = np.array(gt_img_ids)[
np.array(gt_img_ids) != ''] # remove trailing empty strings added for collate_fn
similarity = predicted_feature @ index_features.T
sorted_indices = torch.topk(similarity, dim=-1, k=50).indices.cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
map_labels = torch.tensor(np.isin(sorted_index_names, gt_img_ids), dtype=torch.uint8)
precisions = torch.cumsum(map_labels, dim=0) * map_labels # Consider only positions corresponding to GTs
precisions = precisions / torch.arange(1, map_labels.shape[0] + 1) # Compute precision for each position
ap_at5.append(float(torch.sum(precisions[:5]) / min(len(gt_img_ids), 5)))
ap_at10.append(float(torch.sum(precisions[:10]) / min(len(gt_img_ids), 10)))
ap_at25.append(float(torch.sum(precisions[:25]) / min(len(gt_img_ids), 25)))
ap_at50.append(float(torch.sum(precisions[:50]) / min(len(gt_img_ids), 50)))
assert target_name == gt_img_ids[0], f"Target name not in GTs {target_name} {gt_img_ids}"
single_gt_labels = torch.tensor(sorted_index_names == target_name)
recall_at5.append(float(torch.sum(single_gt_labels[:5])))
recall_at10.append(float(torch.sum(single_gt_labels[:10])))
recall_at25.append(float(torch.sum(single_gt_labels[:25])))
recall_at50.append(float(torch.sum(single_gt_labels[:50])))
map_at5 = np.mean(ap_at5) * 100
map_at10 = np.mean(ap_at10) * 100
map_at25 = np.mean(ap_at25) * 100
map_at50 = np.mean(ap_at50) * 100
recall_at5 = np.mean(recall_at5) * 100
recall_at10 = np.mean(recall_at10) * 100
recall_at25 = np.mean(recall_at25) * 100
recall_at50 = np.mean(recall_at50) * 100
return {
'circo_map_at5': map_at5,
'circo_map_at10': map_at10,
'circo_map_at25': map_at25,
'circo_map_at50': map_at50,
'circo_recall_at5': recall_at5,
'circo_recall_at10': recall_at10,
'circo_recall_at25': recall_at25,
'circo_recall_at50': recall_at50,
}
@torch.no_grad()
def circo_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str], pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRCODataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRCODataset(dataset_path, 'val', 'relative', preprocess)
return circo_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
def main():
parser = ArgumentParser()
parser.add_argument("--exp-name", type=str, help="Experiment to evaluate")
parser.add_argument("--eval-type", type=str, choices=['oti', 'phi', 'searle', 'searle-xl', 'pic2word'], required=True,
help="If 'oti' evaluate directly using the inverted oti pseudo tokens, "
"if 'phi' predicts the pseudo tokens using the phi network, "
"if 'searle' uses the pre-trained SEARLE model to predict the pseudo tokens, "
"if 'searle-xl' uses the pre-trained SEARLE-XL model to predict the pseudo tokens"
)
parser.add_argument("--dataset", type=str, required=True, choices=['cirr', 'fashioniq', 'circo'],
help="Dataset to use")
parser.add_argument("--dataset-path", type=str, help="Path to the dataset", required=True)
parser.add_argument("--preprocess-type", default="clip", type=str, choices=['clip', 'targetpad'],
help="Preprocess pipeline to use")
parser.add_argument("--phi-checkpoint-name", type=str,
help="Phi checkpoint to use, needed when using phi, e.g. 'phi_20.pt'")
parser.add_argument("--clip_model_name", default="giga", type=str)
parser.add_argument("--cache_dir", default="./hf_models", type=str)
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
args = parser.parse_args()
#if args.eval_type in ['phi', 'oti'] and args.exp_name is None:
# raise ValueError("Experiment name is required when using phi or oti evaluation type")
if args.eval_type == 'phi' and args.phi_checkpoint_name is None:
raise ValueError("Phi checkpoint name is required when using phi evaluation type")
if args.eval_type == 'oti':
experiment_path = PROJECT_ROOT / 'data' / "oti_pseudo_tokens" / args.dataset.lower() / 'val' / args.exp_name
if not experiment_path.exists():
raise ValueError(f"Experiment {args.exp_name} not found")
with open(experiment_path / 'hyperparameters.json') as f:
hyperparameters = json.load(f)
pseudo_tokens = torch.load(experiment_path / 'ema_oti_pseudo_tokens.pt', map_location=device)
with open(experiment_path / 'image_names.pkl', 'rb') as f:
ref_names_list = pickle.load(f)
clip_model_name = hyperparameters['clip_model_name']
clip_model, clip_preprocess = clip.load(clip_model_name, device='cpu', jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
elif args.eval_type in ['phi', 'searle', 'searle-xl', 'pic2word']:
if args.eval_type == 'phi':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=0.5).to(
device)
phi.load_state_dict(
torch.load(args.phi_checkpoint_name, map_location=device)[
phi.__class__.__name__])
phi = phi.eval()
elif args.eval_type == 'pic2word':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = PIC2WORD(embed_dim=text_encoder.config.projection_dim,
output_dim=text_encoder.config.hidden_size,
).to(device)
sd = torch.load(args.phi_checkpoint_name, map_location=device)['state_dict_img2text']
sd = {k[len('module.'):]: v for k, v in sd.items()}
phi.load_state_dict(sd)
phi = phi.eval()
else: # searle or searle-xl
if args.eval_type == 'searle':
clip_model_name = 'ViT-B/32'
else: # args.eval_type == 'searle-xl':
clip_model_name = 'ViT-L/14'
phi, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
backbone=clip_model_name)
phi = phi.to(device).eval()
clip_model, clip_preprocess = clip.load(clip_model_name, device=device, jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
if args.dataset.lower() == 'fashioniq':
relative_val_dataset = FashionIQDataset(args.dataset_path, 'val', ['dress', 'toptee', 'shirt'],
'relative', preprocess, no_duplicates=True)
elif args.dataset.lower() == 'cirr':
relative_val_dataset = CIRRDataset(args.dataset_path, 'val', 'relative', preprocess,
no_duplicates=True)
elif args.dataset.lower() == 'circo':
relative_val_dataset = CIRCODataset(args.dataset_path, 'val', 'relative', preprocess)
else:
raise ValueError("Dataset not supported")
#clip_model = clip_model.float().to(device)
image_encoder = image_encoder.float().to(device)
text_encoder = text_encoder.float().to(device)
pseudo_tokens, ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi, relative_val_dataset, args)
pseudo_tokens = pseudo_tokens.to(device)
else:
raise ValueError("Eval type not supported")
print(f"Eval type = {args.eval_type} \t exp name = {args.exp_name} \t")
if args.dataset.lower() == 'fashioniq':
recalls_at10 = []
recalls_at50 = []
for dress_type in ['shirt', 'dress', 'toptee']:
fiq_metrics = fiq_val_retrieval(args.dataset_path, dress_type, image_encoder, text_encoder, ref_names_list,
pseudo_tokens, preprocess)
recalls_at10.append(fiq_metrics['fiq_recall_at10'])
recalls_at50.append(fiq_metrics['fiq_recall_at50'])
for k, v in fiq_metrics.items():
print(f"{dress_type}_{k} = {v:.2f}")
print("\n")
print(f"average_fiq_recall_at10 = {np.mean(recalls_at10):.2f}")
print(f"average_fiq_recall_at50 = {np.mean(recalls_at50):.2f}")
elif args.dataset.lower() == 'cirr':
cirr_metrics = cirr_val_retrieval(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
preprocess)
for k, v in cirr_metrics.items():
print(f"{k} = {v:.2f}")
elif args.dataset.lower() == 'circo':
circo_metrics = circo_val_retrieval(args.dataset_path, clip_model_name, ref_names_list, pseudo_tokens,
preprocess)
for k, v in circo_metrics.items():
print(f"{k} = {v:.2f}")
if __name__ == '__main__':
main()
|