LinCIR / train_phi.py
Geonmo's picture
initial commit
cacafc1
'''
LinCIR
Copyright (c) 2023-present NAVER Corp.
CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
'''
import json
import os
import pickle
import random
import math
from argparse import ArgumentParser
from pathlib import Path
from typing import Literal, Tuple, Dict, List, Set
import logging
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from loader import build_loader, CIRRDataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, EMAModel
from utils import extract_image_features, extract_pseudo_tokens_with_phi
from validate import cirr_compute_val_metrics
import transformers
from transformers import get_scheduler
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from accelerate.state import AcceleratorState
from accelerate.logging import get_logger
logger = get_logger(__name__)
def parse_args():
parser = ArgumentParser()
parser.add_argument("--output_dir", default="trained_models", type=str,
help="The output directory where the model predictions and checkpoints will be written")
parser.add_argument("--logging_dir", default="logs", type=str, help="tensorboard logs will saved here")
parser.add_argument("--cache_dir", default="./hf_models", type=str,
help="Path to model cache folder")
parser.add_argument("--report_to", default="tensorboard", type=str, help="")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--clip_model_name", default="giga", type=str,
help="CLIP model to use, e.g 'large', 'giga'")
parser.add_argument("--cirr_dataset_path", type=str, help="Path to CIRR dataset", required=True)
parser.add_argument("--keywords_path", type=str, help="Path to keywords json file")
parser.add_argument("--resume", default=None, type=str, help="Path to pretrained ckpt")
parser.add_argument("--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--lr_scheduler", type=str, default="constant",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
help="")
parser.add_argument("--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--max_train_steps", type=int, default=50000, help="Total number of training steps to perform")
parser.add_argument("--phi_dropout", default=0.5, type=float, help="Dropout probability for the phi network")
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
parser.add_argument("--batch_size", default=256, type=int, help="Phi training batch size")
parser.add_argument("--num_workers", default=10, type=int, help="Number of workers")
parser.add_argument("--learning_rate", default=1e-4, type=float, help="Learning rate")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="Number of updates steps to accumulate before performing a backward/update pass")
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.")
parser.add_argument("--mixed_precision", default=None, type=str, choices=["no", "fp16", "bf16"], help="mixed precision")
parser.add_argument("--validation_steps", default=1, type=int, help="Validation frequency expressed in epochs")
parser.add_argument("--checkpointing_steps", default=None, type=int, help="Save a checkpoint of the training state every X updates")
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--seed", type=int, default=None, help="seed for reproducibility")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def save_phi(name: str, cur_epoch: int, model_to_save: Phi, training_path: Path) -> None:
"""
Save the weights of Phi during training
"""
models_path = os.path.join(training_path, "checkpoints")
os.makedirs(models_path, exist_ok=True)
model_name = model_to_save.__class__.__name__
torch.save({
'epoch': cur_epoch,
model_name: model_to_save.state_dict(),
}, os.path.join(models_path, f'{name}.pt'))
def train_phi(args):
# We are going to use the pre-extracted clip image features. so we do not need image_encoder anymore.
### init accelerator here
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
)
os.makedirs(args.output_dir, exist_ok=True)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
### Define the text encoder from clip
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
### Define the phi model
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=args.phi_dropout)
if args.resume:
phi.load_state_dict(
torch.load(args.resume, map_location=accelerator.device)[
phi.__class__.__name__])
### GPU handling
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
image_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.use_ema:
import copy
ema_phi = copy.deepcopy(phi)
ema_phi = EMAModel(ema_phi.parameters())
ema_phi.to(accelerator.device, dtype=weight_dtype)
### Define the train datasets
print('pytorch loader')
train_dataset = build_loader(args, tokenizer, accelerator)
## evaluator
if accelerator.is_main_process:
## Define CIRR validation set
cirr_relative_val_dataset = CIRRDataset(args.cirr_dataset_path, 'val', 'relative', clip_preprocess)
cirr_classic_val_dataset = CIRRDataset(args.cirr_dataset_path, 'val', 'classic', clip_preprocess)
# Extract the features for the CIRR validation set
cirr_val_index_features, cirr_val_index_names = extract_image_features(cirr_classic_val_dataset, image_encoder)
# Define the optimizer, the loss and the grad scaler
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(phi.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps * accelerator.num_processes,
)
phi, optimizer, lr_scheduler, train_dataset = accelerator.prepare(
phi, optimizer, lr_scheduler, train_dataset
)
if accelerator.is_main_process:
accelerator.init_trackers("zeroshot-cir", config=vars(args))
# Start with the training loop
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total steps = {args.max_train_steps}")
phi.train()
train_loss = 0.0
global_step = 0
best_recall = -1
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
while True:
for idx, (original_tokens, replaced_tokens, indicators) in enumerate(train_dataset):
original_tokens = original_tokens.to(accelerator.device)
replaced_tokens = replaced_tokens.to(accelerator.device)
org = text_encoder(input_ids=original_tokens)
original_text_embeddings, original_last_hidden_states = org.text_embeds, org.last_hidden_state
input_features = original_text_embeddings.clone()
input_features += 1.0 * torch.rand(input_features.shape[0], device=input_features.device).unsqueeze(-1) * torch.randn(input_features.shape, device=input_features.device)
# normalize test
if args.l2_normalize:
input_features = F.normalize(input_features, dim=-1)
#################
estimated_token_embeddings = phi(input_features)
replaced_text_embeddings, replaced_last_hidden_states = encode_with_pseudo_tokens_HF(text_encoder, replaced_tokens, estimated_token_embeddings, return_last_states=True)
loss = F.mse_loss(replaced_text_embeddings.float(), original_text_embeddings.float(), reduction="mean")
avg_loss = accelerator.gather(loss.repeat(args.batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagation
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm is not None:
accelerator.clip_grad_norm_(phi.parameters(), arg.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
if args.use_ema:
ema_phi.step(phi.module.parameters())
progress_bar.update(1)
global_step += 1
accelerator.log({"train/train_loss": train_loss}, step=global_step)
train_loss = 0.0
accelerator.log({'train/lr': lr_scheduler.get_last_lr()[0]}, step=global_step)
accelerator.log({'train/preproc_rate': torch.sum(indicators).item() / len(indicators)}, step=global_step)
if args.checkpointing_steps and global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
logger.info(f"model saving... step: {global_step}")
save_phi(f"phi_{global_step:09}", global_step, accelerator.unwrap_model(phi), args.output_dir)
save_phi(f"phi_latest", global_step, accelerator.unwrap_model(phi), args.output_dir)
if args.use_ema:
phi_for_saving = copy.deepcopy(accelerator.unwrap_model(phi))
ema_phi.copy_to(phi_for_saving.parameters())
save_phi(f"ema_phi_{global_step:09}", global_step, phi_for_saving, args.output_dir)
save_phi(f"ema_phi_latest", global_step, phi_for_saving, args.output_dir)
if global_step % args.validation_steps == 0 or global_step == 50:
if accelerator.is_main_process:
logger.info(f"evaluate model... step: {global_step}")
if args.use_ema:
phi_for_eval = copy.deepcopy(accelerator.unwrap_model(phi))
ema_phi.copy_to(phi_for_eval.parameters())
else:
phi_for_eval = phi
phi_for_eval.eval()
# Extract the pseudo tokens for the CIRR validation set using Phi
cirr_val_pseudo_tokens, cirr_val_ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi_for_eval,
cirr_relative_val_dataset, args)
cirr_val_pseudo_tokens = cirr_val_pseudo_tokens.to(accelerator.device)
# Compute the CIRR validation metrics
cirr_results_dict = cirr_compute_val_metrics(cirr_relative_val_dataset, text_encoder,
cirr_val_index_features, cirr_val_index_names,
cirr_val_ref_names_list, cirr_val_pseudo_tokens)
check_list = ['cirr_recall_at1', 'cirr_recall_at5', 'cirr_recall_at10', 'cirr_recall_at50']
for check_key in check_list:
accelerator.log({f"validate/{check_key}": cirr_results_dict[check_key]}, step=global_step)
print(json.dumps(cirr_results_dict, indent=4))
# Save the best model.
if args.checkpointing_steps:
if cirr_results_dict['cirr_recall_at1'] > best_recall:
best_recall = cirr_results_dict['cirr_recall_at1']
logger.info(f"best model saving... step: {global_step}")
save_phi("phi_best", global_step, accelerator.unwrap_model(phi), args.output_dir)
phi.train()
if global_step >= args.max_train_steps:
break
if __name__ == '__main__':
args = parse_args()
train_phi(args)