Spaces:
Running
Running
File size: 22,239 Bytes
221e607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
import os
import numpy as np
import cv2
import tensorflow as tf
def pred_lines(image, interpreter, input_details, output_details, input_shape=[512, 512], score_thr=0.10, dist_thr=20.0):
h, w, _ = image.shape
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
interpreter.set_tensor(input_details[0]['index'], batch_image)
interpreter.invoke()
pts = interpreter.get_tensor(output_details[0]['index'])[0]
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
start = vmap[:,:,:2]
end = vmap[:,:,2:]
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
segments_list = []
for center, score in zip(pts, pts_score):
y, x = center
distance = dist_map[y, x]
if score > score_thr and distance > dist_thr:
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
x_start = x + disp_x_start
y_start = y + disp_y_start
x_end = x + disp_x_end
y_end = y + disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
lines = 2 * np.array(segments_list) # 256 > 512
lines[:,0] = lines[:,0] * w_ratio
lines[:,1] = lines[:,1] * h_ratio
lines[:,2] = lines[:,2] * w_ratio
lines[:,3] = lines[:,3] * h_ratio
return lines
def pred_squares(image,
interpreter,
input_details,
output_details,
input_shape=[512, 512],
params={'score': 0.06,
'outside_ratio': 0.28,
'inside_ratio': 0.45,
'w_overlap': 0.0,
'w_degree': 1.95,
'w_length': 0.0,
'w_area': 1.86,
'w_center': 0.14}):
h, w, _ = image.shape
original_shape = [h, w]
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
interpreter.set_tensor(input_details[0]['index'], batch_image)
interpreter.invoke()
pts = interpreter.get_tensor(output_details[0]['index'])[0]
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
start = vmap[:,:,:2] # (x, y)
end = vmap[:,:,2:] # (x, y)
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
junc_list = []
segments_list = []
for junc, score in zip(pts, pts_score):
y, x = junc
distance = dist_map[y, x]
if score > params['score'] and distance > 20.0:
junc_list.append([x, y])
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
d_arrow = 1.0
x_start = x + d_arrow * disp_x_start
y_start = y + d_arrow * disp_y_start
x_end = x + d_arrow * disp_x_end
y_end = y + d_arrow * disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
segments = np.array(segments_list)
####### post processing for squares
# 1. get unique lines
point = np.array([[0, 0]])
point = point[0]
start = segments[:,:2]
end = segments[:,2:]
diff = start - end
a = diff[:, 1]
b = -diff[:, 0]
c = a * start[:,0] + b * start[:,1]
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
theta = np.arctan2(diff[:,0], diff[:,1]) * 180 / np.pi
theta[theta < 0.0] += 180
hough = np.concatenate([d[:,None], theta[:,None]], axis=-1)
d_quant = 1
theta_quant = 2
hough[:,0] //= d_quant
hough[:,1] //= theta_quant
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
yx_indices = hough[indices,:].astype('int32')
acc_map[yx_indices[:,0], yx_indices[:,1]] = counts
idx_map[yx_indices[:,0], yx_indices[:,1]] = indices
acc_map_np = acc_map
acc_map = acc_map[None,:,:,None]
### fast suppression using tensorflow op
acc_map = tf.constant(acc_map, dtype=tf.float32)
max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5,5), strides=1, padding='same')(acc_map)
acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
flatten_acc_map = tf.reshape(acc_map, [1, -1])
topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
_, h, w, _ = acc_map.shape
y = tf.expand_dims(topk_indices // w, axis=-1)
x = tf.expand_dims(topk_indices % w, axis=-1)
yx = tf.concat([y, x], axis=-1)
###
yx = yx[0].numpy()
indices = idx_map[yx[:,0], yx[:,1]]
topk_values = topk_values.numpy()[0]
basis = 5 // 2
merged_segments = []
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
y, x = yx_pt
if max_indice == -1 or value == 0:
continue
segment_list = []
for y_offset in range(-basis, basis+1):
for x_offset in range(-basis, basis+1):
indice = idx_map[y+y_offset,x+x_offset]
cnt = int(acc_map_np[y+y_offset,x+x_offset])
if indice != -1:
segment_list.append(segments[indice])
if cnt > 1:
check_cnt = 1
current_hough = hough[indice]
for new_indice, new_hough in enumerate(hough):
if (current_hough == new_hough).all() and indice != new_indice:
segment_list.append(segments[new_indice])
check_cnt += 1
if check_cnt == cnt:
break
group_segments = np.array(segment_list).reshape([-1, 2])
sorted_group_segments = np.sort(group_segments, axis=0)
x_min, y_min = sorted_group_segments[0,:]
x_max, y_max = sorted_group_segments[-1,:]
deg = theta[max_indice]
if deg >= 90:
merged_segments.append([x_min, y_max, x_max, y_min])
else:
merged_segments.append([x_min, y_min, x_max, y_max])
# 2. get intersections
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
start = new_segments[:,:2] # (x1, y1)
end = new_segments[:,2:] # (x2, y2)
new_centers = (start + end) / 2.0
diff = start - end
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
# ax + by = c
a = diff[:,1]
b = -diff[:,0]
c = a * start[:,0] + b * start[:,1]
pre_det = a[:,None] * b[None,:]
det = pre_det - np.transpose(pre_det)
pre_inter_y = a[:,None] * c[None,:]
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
pre_inter_x = c[:,None] * b[None,:]
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
inter_pts = np.concatenate([inter_x[:,:,None], inter_y[:,:,None]], axis=-1).astype('int32')
# 3. get corner information
# 3.1 get distance
'''
dist_segments:
| dist(0), dist(1), dist(2), ...|
dist_inter_to_segment1:
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
...
dist_inter_to_semgnet2:
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
...
'''
dist_inter_to_segment1_start = np.sqrt(np.sum(((inter_pts - start[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment1_end = np.sqrt(np.sum(((inter_pts - end[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_start = np.sqrt(np.sum(((inter_pts - start[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_end = np.sqrt(np.sum(((inter_pts - end[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
# sort ascending
dist_inter_to_segment1 = np.sort(np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
dist_inter_to_segment2 = np.sort(np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
# 3.2 get degree
inter_to_start = new_centers[:,None,:] - inter_pts
deg_inter_to_start = np.arctan2(inter_to_start[:,:,1], inter_to_start[:,:,0]) * 180 / np.pi
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
inter_to_end = new_centers[None,:,:] - inter_pts
deg_inter_to_end = np.arctan2(inter_to_end[:,:,1], inter_to_end[:,:,0]) * 180 / np.pi
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
'''
0 -- 1
| |
3 -- 2
'''
# rename variables
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
# sort deg ascending
deg_sort = np.sort(np.concatenate([deg1_map[:,:,None], deg2_map[:,:,None]], axis=-1), axis=-1)
deg_diff_map = np.abs(deg1_map - deg2_map)
# we only consider the smallest degree of intersect
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
# define available degree range
deg_range = [60, 120]
corner_dict = {corner_info: [] for corner_info in range(4)}
inter_points = []
for i in range(inter_pts.shape[0]):
for j in range(i + 1, inter_pts.shape[1]):
# i, j > line index, always i < j
x, y = inter_pts[i, j, :]
deg1, deg2 = deg_sort[i, j, :]
deg_diff = deg_diff_map[i, j]
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
check_distance = ((dist_inter_to_segment1[i,j,1] >= dist_segments[i] and \
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * outside_ratio) or \
(dist_inter_to_segment1[i,j,1] <= dist_segments[i] and \
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * inside_ratio)) and \
((dist_inter_to_segment2[i,j,1] >= dist_segments[j] and \
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * outside_ratio) or \
(dist_inter_to_segment2[i,j,1] <= dist_segments[j] and \
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * inside_ratio))
if check_degree and check_distance:
corner_info = None
if (deg1 >= 0 and deg1 <= 45 and deg2 >=45 and deg2 <= 120) or \
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
corner_info, color_info = 0, 'blue'
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
corner_info, color_info = 1, 'green'
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
corner_info, color_info = 2, 'black'
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
corner_info, color_info = 3, 'cyan'
else:
corner_info, color_info = 4, 'red' # we don't use it
continue
corner_dict[corner_info].append([x, y, i, j])
inter_points.append([x, y])
square_list = []
connect_list = []
segments_list = []
for corner0 in corner_dict[0]:
for corner1 in corner_dict[1]:
connect01 = False
for corner0_line in corner0[2:]:
if corner0_line in corner1[2:]:
connect01 = True
break
if connect01:
for corner2 in corner_dict[2]:
connect12 = False
for corner1_line in corner1[2:]:
if corner1_line in corner2[2:]:
connect12 = True
break
if connect12:
for corner3 in corner_dict[3]:
connect23 = False
for corner2_line in corner2[2:]:
if corner2_line in corner3[2:]:
connect23 = True
break
if connect23:
for corner3_line in corner3[2:]:
if corner3_line in corner0[2:]:
# SQUARE!!!
'''
0 -- 1
| |
3 -- 2
square_list:
order: 0 > 1 > 2 > 3
| x0, y0, x1, y1, x2, y2, x3, y3 |
| x0, y0, x1, y1, x2, y2, x3, y3 |
...
connect_list:
order: 01 > 12 > 23 > 30
| line_idx01, line_idx12, line_idx23, line_idx30 |
| line_idx01, line_idx12, line_idx23, line_idx30 |
...
segments_list:
order: 0 > 1 > 2 > 3
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
...
'''
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
def check_outside_inside(segments_info, connect_idx):
# return 'outside or inside', min distance, cover_param, peri_param
if connect_idx == segments_info[0]:
check_dist_mat = dist_inter_to_segment1
else:
check_dist_mat = dist_inter_to_segment2
i, j = segments_info
min_dist, max_dist = check_dist_mat[i, j, :]
connect_dist = dist_segments[connect_idx]
if max_dist > connect_dist:
return 'outside', min_dist, 0, 1
else:
return 'inside', min_dist, -1, -1
top_square = None
try:
map_size = input_shape[0] / 2
squares = np.array(square_list).reshape([-1,4,2])
score_array = []
connect_array = np.array(connect_list)
segments_array = np.array(segments_list).reshape([-1,4,2])
# get degree of corners:
squares_rollup = np.roll(squares, 1, axis=1)
squares_rolldown = np.roll(squares, -1, axis=1)
vec1 = squares_rollup - squares
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
vec2 = squares_rolldown - squares
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
# get square score
overlap_scores = []
degree_scores = []
length_scores = []
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
'''
0 -- 1
| |
3 -- 2
# segments: [4, 2]
# connects: [4]
'''
###################################### OVERLAP SCORES
cover = 0
perimeter = 0
# check 0 > 1 > 2 > 3
square_length = []
for start_idx in range(4):
end_idx = (start_idx + 1) % 4
connect_idx = connects[start_idx] # segment idx of segment01
start_segments = segments[start_idx]
end_segments = segments[end_idx]
start_point = square[start_idx]
end_point = square[end_idx]
# check whether outside or inside
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, connect_idx)
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
square_length.append(dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
overlap_scores.append(cover / perimeter)
######################################
###################################### DEGREE SCORES
'''
deg0 vs deg2
deg1 vs deg3
'''
deg0, deg1, deg2, deg3 = degree
deg_ratio1 = deg0 / deg2
if deg_ratio1 > 1.0:
deg_ratio1 = 1 / deg_ratio1
deg_ratio2 = deg1 / deg3
if deg_ratio2 > 1.0:
deg_ratio2 = 1 / deg_ratio2
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
######################################
###################################### LENGTH SCORES
'''
len0 vs len2
len1 vs len3
'''
len0, len1, len2, len3 = square_length
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
length_scores.append((len_ratio1 + len_ratio2) / 2)
######################################
overlap_scores = np.array(overlap_scores)
overlap_scores /= np.max(overlap_scores)
degree_scores = np.array(degree_scores)
#degree_scores /= np.max(degree_scores)
length_scores = np.array(length_scores)
###################################### AREA SCORES
area_scores = np.reshape(squares, [-1, 4, 2])
area_x = area_scores[:,:,0]
area_y = area_scores[:,:,1]
correction = area_x[:,-1] * area_y[:,0] - area_y[:,-1] * area_x[:,0]
area_scores = np.sum(area_x[:,:-1] * area_y[:,1:], axis=-1) - np.sum(area_y[:,:-1] * area_x[:,1:], axis=-1)
area_scores = 0.5 * np.abs(area_scores + correction)
area_scores /= (map_size * map_size) #np.max(area_scores)
######################################
###################################### CENTER SCORES
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
# squares: [n, 4, 2]
square_centers = np.mean(squares, axis=1) # [n, 2]
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
center_scores = center2center / (map_size / np.sqrt(2.0))
'''
score_w = [overlap, degree, area, center, length]
'''
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
score_array = params['w_overlap'] * overlap_scores \
+ params['w_degree'] * degree_scores \
+ params['w_area'] * area_scores \
- params['w_center'] * center_scores \
+ params['w_length'] * length_scores
best_square = []
sorted_idx = np.argsort(score_array)[::-1]
score_array = score_array[sorted_idx]
squares = squares[sorted_idx]
except Exception as e:
pass
try:
new_segments[:,0] = new_segments[:,0] * 2 / input_shape[1] * original_shape[1]
new_segments[:,1] = new_segments[:,1] * 2 / input_shape[0] * original_shape[0]
new_segments[:,2] = new_segments[:,2] * 2 / input_shape[1] * original_shape[1]
new_segments[:,3] = new_segments[:,3] * 2 / input_shape[0] * original_shape[0]
except:
new_segments = []
try:
squares[:,:,0] = squares[:,:,0] * 2 / input_shape[1] * original_shape[1]
squares[:,:,1] = squares[:,:,1] * 2 / input_shape[0] * original_shape[0]
except:
squares = []
score_array = []
try:
inter_points = np.array(inter_points)
inter_points[:,0] = inter_points[:,0] * 2 / input_shape[1] * original_shape[1]
inter_points[:,1] = inter_points[:,1] * 2 / input_shape[0] * original_shape[0]
except:
inter_points = []
return new_segments, squares, score_array, inter_points
|