File size: 4,314 Bytes
d30410b
 
 
 
 
 
 
 
 
 
 
de0f093
 
 
d30410b
 
15ab68a
d30410b
 
 
 
15ab68a
 
d30410b
 
15ab68a
d30410b
 
15ab68a
 
 
d30410b
 
de0f093
d30410b
 
15ab68a
 
d30410b
de0f093
d30410b
 
 
 
15ab68a
 
d30410b
 
 
 
15ab68a
d30410b
 
 
 
 
15ab68a
d30410b
15ab68a
 
d30410b
15ab68a
 
d30410b
15ab68a
d30410b
 
 
 
 
 
 
15ab68a
d30410b
15ab68a
d30410b
 
15ab68a
d30410b
 
 
 
 
15ab68a
d30410b
 
 
 
 
 
 
 
 
 
 
 
 
15ab68a
d30410b
 
 
 
 
 
 
15ab68a
 
 
 
d30410b
 
15ab68a
d30410b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
import pandas as pd
import json
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone

LAST_UPDATED = "OCT 2nd 2024"

column_names = {
    "Model": "Model",
    "WER": "WER",
    "CER": "CER",
}

# Load evaluation results
eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()

if not csv_results.exists():
    raise Exception(f"CSV file {csv_results} does not exist locally")

# Read CSV with data and parse columns
original_df = pd.read_csv(csv_results)

# Format the columns
def formatter(x):
    if type(x) is str:
        return x
    else:
        return round(x, 2)

for col in original_df.columns:
    if col == "Model":
        original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        original_df[col] = original_df[col].apply(formatter)

original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='WER', inplace=True)

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]

def request_model(model_text):
    # Check if the model exists on the Hub
    base_model_on_hub, error_msg = is_model_on_hub(model_text)

    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")

    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "dataset": "vargha/common_voice_fa"
    }

    # Prepare file path
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)

    filename = model_text.replace("/", "@")
    if filename in requested_models:
        return styled_error(f"A request for this model '{model_text}' was already made.")
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))

        upload_file(filename, out_filepath)

        # Include file in the list of uploaded files
        requested_models.append(filename)

        # Remove the local file
        out_filepath.unlink()

        return styled_message("πŸ€— Your request has been submitted and will be evaluated soon!</p>")
    except Exception as e:
        return styled_error(f"Error submitting request: {e}")

with gr.Blocks() as demo:
    gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem("βœ‰οΈβœ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2):
            with gr.Column():
                gr.Markdown("# βœ‰οΈβœ¨ Request results for a new model here!", elem_classes="markdown-text")
                model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
                mdw_submission_result = gr.Markdown()
                btn_submit = gr.Button(value="πŸš€ Request")
                btn_submit.click(request_model, [model_name_textbox], mdw_submission_result)

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.launch()