import gradio as gr import pandas as pd import json from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message from datetime import datetime, timezone LAST_UPDATED = "OCT 2nd 2024" column_names = { "Model": "Model", "WER": "WER", "CER": "CER", } # Load evaluation results eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub() if not csv_results.exists(): raise Exception(f"CSV file {csv_results} does not exist locally") # Read CSV with data and parse columns original_df = pd.read_csv(csv_results) # Format the columns def formatter(x): if type(x) is str: return x else: return round(x, 2) for col in original_df.columns: if col == "Model": original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) else: original_df[col] = original_df[col].apply(formatter) original_df.rename(columns=column_names, inplace=True) original_df.sort_values(by='WER', inplace=True) COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] def request_model(model_text): # Check if the model exists on the Hub base_model_on_hub, error_msg = is_model_on_hub(model_text) if not base_model_on_hub: return styled_error(f"Base model '{model_text}' {error_msg}") # Construct the output dictionary current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") eval_entry = { "date": current_time, "model": model_text, "dataset": "vargha/common_voice_fa" } # Prepare file path DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True) filename = model_text.replace("/", "@") if filename in requested_models: return styled_error(f"A request for this model '{model_text}' was already made.") try: filename_ext = filename + ".txt" out_filepath = DIR_OUTPUT_REQUESTS / filename_ext # Write the results to a text file with open(out_filepath, "w") as f: f.write(json.dumps(eval_entry)) upload_file(filename, out_filepath) # Include file in the list of uploaded files requested_models.append(filename) # Remove the local file out_filepath.unlink() return styled_message("🤗 Your request has been submitted and will be evaluated soon!

") except Exception as e: return styled_error(f"Error submitting request: {e}") with gr.Blocks() as demo: gr.HTML(BANNER, elem_id="banner") gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0): leaderboard_table = gr.components.Dataframe( value=original_df, datatype=TYPES, elem_id="leaderboard-table", interactive=False, visible=True, ) with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1): gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2): with gr.Column(): gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text") model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") mdw_submission_result = gr.Markdown() btn_submit = gr.Button(value="🚀 Request") btn_submit.click(request_model, [model_name_textbox], mdw_submission_result) gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): gr.Textbox( value=CITATION_TEXT, lines=7, label="Copy the BibTeX snippet to cite this source", elem_id="citation-button", show_copy_button=True, ) demo.launch()