File size: 16,331 Bytes
2443328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
## LIBRARIES ###
## Data
import numpy as np
from numpy.core.numeric import outer
import pandas as pd
import torch
import pickle
from tqdm import tqdm
from math import floor
from collections import defaultdict
from transformers import AutoTokenizer
#pd.set_option('precision', 2)
#pd.options.display.float_format = '${:,.2f}'.format

# Analysis
# from gensim.models.doc2vec import Doc2Vec
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import nltk
from nltk.cluster import KMeansClusterer
import scipy.spatial.distance as sdist
from scipy.spatial import distance_matrix
# nltk.download('punkt') #make sure that punkt is downloaded

# App & Visualization
import streamlit as st
import altair as alt
import plotly.graph_objects as go
from streamlit_vega_lite import altair_component


# utils
from random import sample
from seal import utils as ut


def down_samp(embedding):
    """Down sample a data frame for altiar visualization """
    # total number of positive and negative sentiments in the class
    #embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
    total_size = embedding.groupby(['slice', 'label'], as_index=False).count()

    user_data = 0
    # if 'Your Sentences' in str(total_size['slice']):
    #     tmp = embedding.groupby(['slice'], as_index=False).count()
    #     val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
    #     user_data = val

    max_sample = total_size.groupby('slice').max()['content']

    # # down sample to meeting altair's max values
    # # but keep the proportional representation of groups
    down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))

    max_samp = max_sample.apply(lambda x: floor(
        x*down_samp)).astype(int).to_dict()
    max_samp['Your Sentences'] = user_data

    # # sample down for each group in the data frame
    embedding = embedding.groupby('slice').apply(
        lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)

    # # order the embedding
    return(embedding)

#down sample low loss points only so misclassified examples are not down sampled in viz


def down_samp_ll(embedding):
    df_ll = embedding[embedding['slice'] == 'low-loss']
    #if(len(df_ll)<5000):
    #    return embedding
    #else:
    df_hl = embedding[embedding['slice'] == 'high-loss']
    down_samp = len(df_ll) - (1000-len(df_hl))
    df_ll.sample(n=down_samp)
    embedding.drop(df_ll.index)
    return embedding


def data_comparison(df):
    selection = alt.selection_multi(fields=['cluster', 'label'])
    color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale=alt.Scale(
        domain=df.cluster.unique().tolist()), legend=None), alt.value("lightgray"))
    opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))

    # basic chart
    scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
        x=alt.X('x:Q', axis=None),
        y=alt.Y('y:Q', axis=None),
        color=color,
        shape=alt.Shape('label:N', scale=alt.Scale(
            range=['circle', 'diamond'])),
        tooltip=['cluster:N', 'slice:N', 'content:N', 'label:N', 'pred:N'],
        opacity=opacity
    ).properties(
        width=1000,
        height=800
    ).interactive()

    legend = alt.Chart(df).mark_point(size=100, filled=True).encode(
        x=alt.X("label:N"),
        y=alt.Y('cluster:N', axis=alt.Axis(
            orient='right'), sort='ascending', title=''),
        shape=alt.Shape('label:N', scale=alt.Scale(
            range=['circle', 'diamond']), legend=None),
        color=color,
    ).add_selection(
        selection
    )
    layered = scatter | legend
    layered = layered.configure_axis(
        grid=False
    ).configure_view(
        strokeOpacity=0
    )

    content = legend.encode(text='content:N')

    return layered


def viz_panel(embedding_df):
    """ Visualization Panel Layout"""
    all_metrics = {}
    st.warning("**Error group visualization**")
    with st.expander("How to read this chart:"):
        st.markdown("* Each **point** is an input example.")
        st.markdown("* Gray points have low-loss and the colored have high-loss. High-loss instances are clustered using **kmeans** and each color represents a cluster.")
        st.markdown(
            "* The **shape** of each point reflects the label category --  positive (diamond) or negative sentiment (circle).")
    #st.altair_chart(data_comparison(down_samp(embedding_df)), use_container_width=True)
    viz = data_comparison(embedding_df)
    st.altair_chart(viz, use_container_width=True)

@st.cache()
def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
    unique_tokens = []
    tokens = []
    for row in tqdm(data['content']):
        tokenized = tokenizer(row, padding=True, truncation=True, return_tensors='pt')
        tokens.append(tokenized['input_ids'].flatten())
        unique_tokens.append(torch.unique(tokenized['input_ids']))
    losses = data['loss'].astype(float)
    high_loss = losses.quantile(loss_quantile)
    loss_weights = np.where(losses > high_loss,losses,0.0)
    loss_weights = loss_weights / loss_weights.sum()

    token_frequencies = defaultdict(float)
    token_frequencies_error = defaultdict(float)
    weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))

    for i in tqdm(range(len(data))):
        for token in unique_tokens[i]:
            token_frequencies[token.item()] += weights_uniform[i]
            token_frequencies_error[token.item()] += loss_weights[i]

    token_lrs = {k: (smoothing+token_frequencies_error[k]) / (
        smoothing+token_frequencies[k]) for k in token_frequencies}
    tokens_sorted = list(map(lambda x: x[0], sorted(
        token_lrs.items(), key=lambda x: x[1])[::-1]))

    top_tokens = []
    for i, (token) in enumerate(tokens_sorted[:top_k]):
        top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
            token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
    return pd.DataFrame(top_tokens, columns=['token', 'freq', 'error-freq', 'ratio'])


def load_precached_groups(data_ll, df_list, num_clusters, group_dict_path, group_idx_path, num_points=1000):
    merged = dynamic_groups(df_list, num_clusters)
    down_samp = len(data_ll) - (num_points-len(merged))
    sample_idx = data_ll.sample(n=down_samp)
    data_ll = data_ll.drop(sample_idx.index)
    # put all the low loss data in one bigger cluster
    data_ll['cluster'] = merged.loc[merged['cluster'].idxmax()].cluster + 1
    merged = pd.concat([merged, data_ll])
    # merged['cluster'] = merged['cluster'].astype('str')
    # with open(group_dict_path, 'rb') as f:
    #     group_dict = pickle.load(f)
    # with open(group_idx_path, 'rb') as f:
    #     group_idx_dict = pickle.load(f)
    # for k,v in group_idx_dict.items():
    #     label = group_dict.get(k)
    #     merged.loc[merged.index.isin(v), ['cluster']] = label
    return merged


def dynamic_groups(df_list, num_clusters):
    merged = pd.DataFrame()
    ind = 0
    for df in df_list:
        kmeans_df, assigned_clusters = kmeans(df, num_clusters=num_clusters)
        kmeans_df['cluster'] = kmeans_df['cluster'] + ind*num_clusters
        ind = ind+1
        merged = pd.concat([merged, kmeans_df])
    return merged


@st.cache(ttl=600)
def get_data(inference, emb):
    preds = inference.outputs.numpy()
    losses = inference.losses.numpy()
    embeddings = pd.DataFrame(emb, columns=['x', 'y'])
    num_examples = len(losses)
    # dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
    return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'],
                                                           dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)


def kmeans(data, num_clusters=3):
    X = np.array(data['embedding'].to_list())
    kclusterer = KMeansClusterer(
        num_clusters, distance=nltk.cluster.util.cosine_distance,
        repeats=25, avoid_empty_clusters=True)
    assigned_clusters = kclusterer.cluster(X, assign_clusters=True)
    data['cluster'] = pd.Series(
        assigned_clusters, index=data.index).astype('int')
    data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x])
    return data, assigned_clusters


def distance_from_centroid(row):
    return sdist.norm(row['embedding'] - row['centroid'].tolist())


@st.cache(ttl=600)
def craft_prompt(cluster_df):
    instruction = "In this task, we'll assign a short and precise label to a cluster of documents based on the topics or concepts most relevant to these documents. The documents are all subsets of a sentiment classification dataset.\n"
    if len(cluster_df) > 10:
        content = cluster_df['content'].str[:600].tolist()
    else:
        content = cluster_df['content'].str[:1000].tolist()
    examples = '\n - '.join(content)
    text = instruction + '- ' + examples + '\n Cluster label:'
    return text.strip()


@st.cache(ttl=600)
def topic_distribution(weights, smoothing=0.01):
    topic_frequencies = defaultdict(float)
    topic_frequencies_error = defaultdict(float)
    weights_uniform = np.full_like(weights, 1 / len(weights))
    num_examples = len(weights)
    for i in range(num_examples):
        example = dataset[i]
        category = example['title']
        topic_frequencies[category] += weights_uniform[i]
        topic_frequencies_error[category] += weights[i]

    topic_ratios = {c: (smoothing + topic_frequencies_error[c]) / (
        smoothing + topic_frequencies[c]) for c in topic_frequencies}

    categories_sorted = map(lambda x: x[0], sorted(
        topic_ratios.items(), key=lambda x: x[1], reverse=True))

    topic_distr = []
    for category in categories_sorted:
        topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
                           topic_frequencies_error[category], '%.2f' % topic_ratios[category], '%s' % category])

    return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])


def populate_session(dataset, model):
    data_df = read_file_to_df(
        './assets/data/'+dataset + '_' + model+'.parquet')
    if model == 'albert-base-v2-yelp-polarity':
        tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model)
    # if "user_data" not in st.session_state:
    #     st.session_state["user_data"] = data_df
    # if "selected_slice" not in st.session_state:
    #     st.session_state["selected_slice"] = None
    return tokenizer


@st.cache(allow_output_mutation=True)
def read_file_to_df(file):
   return pd.read_parquet(file)


if __name__ == "__main__":
    ### STREAMLIT APP CONGFIG ###
    st.set_page_config(layout="wide", page_title="Interactive Error Analysis")

    ut.init_style()

    lcol, rcol = st.columns([5, 2])
    # ******* loading the mode and the data
    #st.sidebar.mardown("<h4>Interactive Error Analysis</h4>", unsafe_allow_html=True)

    dataset = st.sidebar.selectbox(
        "Dataset",
        ["amazon_polarity", "yelp_polarity", "imdb"],
        index=1
    )

    model = st.sidebar.selectbox(
        "Model",
        ["distilbert-base-uncased-finetuned-sst-2-english",
            "albert-base-v2-yelp-polarity", "distilbert-imdb"],
    )

    ### LOAD DATA AND TOKENIZER VARIABLES ###
    ##uncomment the next next line to run dynamically and not from file
    #tokenizer = populate_session(dataset, model)
    if dataset == 'imdb':
        data_df = read_file_to_df('./assets/data/imdb_distilbert.parquet')
    else:
        data_df = read_file_to_df(
            './assets/data/'+dataset + '_' + model+'.parquet')
        data_df = data_df[:20000]

    loss_quantile = st.sidebar.slider(
        "Loss Quantile", min_value=0.9, max_value=1.0, step=0.01, value=0.98
    )

    data_df['loss'] = data_df['loss'].astype(float)
    data_df['pred'] = data_df['pred'].astype(int)
    losses = data_df['loss']
    high_loss = losses.quantile(loss_quantile)
    data_df['slice'] = np.where(data_df['loss'] >= high_loss, 'high-loss', 'low-loss')
    # drop rows that are not hl
    data_hl = pd.DataFrame(data_df[data_df['slice'] == 'high-loss'])
    #data_hl = data_hl.drop(data_hl[data_hl.pred==data_hl.label].index)
    data_ll = pd.DataFrame(data_df[data_df['slice'] == 'low-loss'])
    # this is to allow clustering over each error type. fp, fn for binary classification
    df_list = [d for _, d in data_hl.groupby(['label'])]

    run_kmeans = st.sidebar.radio(
        "Cluster error group?", ('True', 'False'), index=0)

    num_clusters = st.sidebar.slider(
        "# clusters", min_value=1, max_value=60, step=1, value=3)

    num_points = st.sidebar.slider(
        "# data points to visualize", min_value=1000, max_value=5000, step=100, value=1000)

    selected_cluster = st.sidebar.number_input(
        label='Cluster #:', max_value=num_clusters-1, min_value=0)

    if run_kmeans == 'True':
        with st.spinner(text='running kmeans...'):
            group_dict_path = './assets/data/cluster-labels/'+dataset+'.pkl'
            group_idx_path = './assets/data/cluster-labels/'+dataset+'_idx.pkl'
            #data_hl_path = './assets/data/high-loss/'+dataset+'.parquet'
            merged = load_precached_groups(data_ll, df_list, int(
                (num_clusters/2)), group_dict_path, group_idx_path, num_points=num_points)
            #dynamic_groups(df_list,)
            #tmp = pd.concat([data_ll, merged], axis =0, ignore_index=True)

    cluster_content = craft_prompt(
        merged.loc[merged['cluster'] == selected_cluster])

    with lcol:
        st.markdown('<h5>Error Groups</h5>', unsafe_allow_html=True)
        with st.expander("How to read this table:"):
            st.markdown(
                "* *Error groups* refers to the subset of evaluation dataset the model performs poorly on.")
            st.markdown(
                "* The table displays model error groups on the evaluation dataset, sorted by loss.")
            st.markdown(
                "* Each row is an input example that includes the label, model pred, loss, and error group.")
        with st.spinner(text='loading error groups...'):
            #dataframe=read_file_to_df('./assets/data/'+dataset+ '_'+ model+'_error-slices.parquet')
            #uncomment the next next line to run dynamically and not from file
            dataframe = merged[['content', 'label', 'pred', 'loss', 'cluster']].sort_values(
                by=['loss'], ascending=False)
            #table_html = dataframe.to_html(columns=['content', 'label', 'pred', 'loss', 'cluster'], max_rows=50)
            #table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
            st.write(dataframe.style.format(
                {'loss': '{:.2f}'}), width=1000, height=300)

    with rcol:
        with st.spinner(text='loading...'):
            st.markdown('<h5>Word Distribution in Error Groups</h5>',
                        unsafe_allow_html=True)
            #uncomment the next two lines to run dynamically and not from file
            # if model == 'albert-base-v2-yelp-polarity':
            #     tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
            # else:
            #     tokenizer = AutoTokenizer.from_pretrained(model)
            # commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
            if dataset == 'imdb':
                commontokens = read_file_to_df('./assets/data/imdb_distilbert_commontokens.parquet')
            else:
                commontokens = read_file_to_df(
                    './assets/data/'+dataset + '_' + model+'_commontokens.parquet')
            with st.expander("How to read this table:"):
                st.markdown(
                    "* The table displays the most frequent tokens in error groups, relative to their frequencies in the val set.")

            st.write(commontokens)

    with st.spinner(text='loading visualization...'):
        viz_panel(merged)

    st.sidebar.download_button(
        data=cluster_content,
        label="Build prompt from data",
        file_name='prompt'
    )