Nick Bolton commited on
Commit
6b2a6c2
1 Parent(s): d101da9

first commit

Browse files
app.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import date
2
+ from datetime import datetime
3
+ import re
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ from PIL import Image
8
+ import plotly.express as px
9
+ import plotly.graph_objects as go
10
+ import streamlit as st
11
+ import time
12
+
13
+ from plotly.subplots import make_subplots
14
+
15
+ # Read CSV file into pandas and extract timestamp data
16
+ dfSentiment = pd.read_csv('data/sentiment_data.csv')
17
+ dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]
18
+
19
+ # Multi-select columns to build chart
20
+ col_list = dfSentiment.columns.tolist()
21
+
22
+ r_sentiment = re.compile(".*sentiment")
23
+ sentiment_cols = list(filter(r_sentiment.match, col_list))
24
+
25
+ r_post = re.compile(".*post")
26
+ post_list = list(filter(r_post.match, col_list))
27
+
28
+ r_perc= re.compile(".*perc")
29
+ perc_list = list(filter(r_perc.match, col_list))
30
+
31
+ r_close = re.compile(".*close")
32
+ close_list = list(filter(r_close.match, col_list))
33
+
34
+ r_volume = re.compile(".*volume")
35
+ volume_list = list(filter(r_volume.match, col_list))
36
+
37
+ sentiment_cols = sentiment_cols + post_list
38
+ stocks_cols = close_list + volume_list
39
+
40
+ # Config for page
41
+ st.set_page_config(
42
+ page_title="Tesla Reddit Sentiment",
43
+ page_icon='✅',
44
+ layout='wide',
45
+ )
46
+
47
+ with st.sidebar:
48
+ # FourthBrain logo to sidebar
49
+ fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
50
+ st.image([fourthbrain_logo], width=300)
51
+
52
+ # Date selection filters
53
+ start_date_filter = st.date_input(
54
+ 'Start Date',
55
+ min(dfSentiment['timestamp']),
56
+ min_value=min(dfSentiment['timestamp']),
57
+ max_value=max(dfSentiment['timestamp'])
58
+ )
59
+
60
+
61
+ end_date_filter = st.date_input(
62
+ 'End Date',
63
+ max(dfSentiment['timestamp']),
64
+ min_value=min(dfSentiment['timestamp']),
65
+ max_value=max(dfSentiment['timestamp'])
66
+ )
67
+
68
+ sentiment_select = st.selectbox("Sentiment", sentiment_cols)
69
+ stock_select = st.selectbox("Stock", stocks_cols)
70
+
71
+ # Banner with TSLA and Reddit images
72
+ company_logo = Image.open('./images/tsla_logo.png')
73
+ reddit_logo = Image.open('./images/reddit_logo.png')
74
+ st.image([company_logo, reddit_logo], width=200)
75
+
76
+ # dashboard title
77
+ st.title("Tesla Reddit Sentiment and Stock Price")
78
+
79
+ ## dataframe filter
80
+ # start date
81
+ dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
82
+
83
+ # end date
84
+ dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)]
85
+ dfSentiment = dfSentiment.reset_index(drop=True)
86
+
87
+
88
+ # creating a single-element container
89
+ placeholder = st.empty()
90
+
91
+ # near real-time / live feed simulation
92
+ for i in range(1, len(dfSentiment)-1):
93
+
94
+ # creating KPIs
95
+ last_close = dfSentiment['close'][i]
96
+ last_close_lag1 = dfSentiment['close'][i-1]
97
+ last_sentiment = dfSentiment['sentiment_score'][i-1]
98
+ last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1]
99
+
100
+
101
+ with placeholder.container():
102
+
103
+ # create columns
104
+ kpi1, kpi2, kpi3 = st.columns(3)
105
+
106
+ # fill in those three columns with respective metrics or KPIs
107
+ kpi1.metric(
108
+ label='Sentiment Score',
109
+ value=round(last_sentiment, 3),
110
+ delta=round(last_sentiment_lag1, 3),
111
+ )
112
+
113
+ kpi2.metric(
114
+ label='Last Closing Price',
115
+ value=round(last_close, 3),
116
+ delta=round(last_close_lag1, 3),
117
+ )
118
+
119
+
120
+ # create two columns for charts
121
+ fig_col1, fig_col2 = st.columns(2)
122
+
123
+ with fig_col1:
124
+ # Add traces
125
+ fig=make_subplots(specs=[[{"secondary_y":True}]])
126
+
127
+
128
+ fig.add_trace(
129
+ go.Scatter(
130
+ x=dfSentiment['timestamp'][0:i],
131
+ y=dfSentiment[sentiment_select][0:i],
132
+ name=sentiment_select,
133
+ mode='lines',
134
+ hoverinfo='none',
135
+ )
136
+ )
137
+
138
+ if sentiment_select.startswith('perc') == True:
139
+ y_axis_label = 'Percentage'
140
+
141
+ elif sentiment_select in sentiment_cols:
142
+ y_axis_label = 'Sentiment'
143
+
144
+ elif sentiment_select in post_list:
145
+ y_axis_label = 'Volume'
146
+
147
+ fig.layout.yaxis.title=y_axis_label
148
+
149
+ if stock_select.startswith('perc') == True:
150
+ fig.add_trace(
151
+ go.Scatter(
152
+ x=dfSentiment['timestamp'][0:i],
153
+ y=dfSentiment[stock_select][0:i],
154
+ name=stock_select,
155
+ mode='lines',
156
+ hoverinfo='none',
157
+ yaxis='y2',
158
+ )
159
+ )
160
+ fig.layout.yaxis2.title='% Change Stock Price ($US)'
161
+
162
+ elif stock_select == 'volume':
163
+ fig.add_trace(
164
+ go.Scatter(
165
+ x=dfSentiment['timestamp'][0:i],
166
+ y=dfSentiment[stock_select][0:i],
167
+ name=stock_select,
168
+ mode='lines',
169
+ hoverinfo='none',
170
+ yaxis='y2',
171
+ )
172
+ )
173
+
174
+ fig.layout.yaxis2.title="Shares Traded"
175
+
176
+
177
+ else:
178
+ fig.add_trace(
179
+ go.Scatter(
180
+ x=dfSentiment['timestamp'][0:i],
181
+ y=dfSentiment[stock_select][0:i],
182
+ name=stock_select,
183
+ mode='lines',
184
+ hoverinfo='none',
185
+ yaxis='y2',
186
+ )
187
+ )
188
+
189
+ fig.layout.yaxis2.title='Stock Price ($USD)'
190
+
191
+
192
+ fig.layout.xaxis.title='Timestamp'
193
+
194
+ # write the figure throught streamlit
195
+ st.write(fig)
196
+
197
+
198
+ st.markdown('### Detailed Data View')
199
+ st.dataframe(dfSentiment.iloc[:, 1:][0:i], width=500)
200
+ time.sleep(1)
data/sentiment_data.csv ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,timestamp,counter,close,volume,sentiment_score,close_lag1,perc_change_close,sentiment_score_lag1,perc_change_sentiment,sentiment_SMA3mo
2
+ 1,2021-03-01,3519376,667.92999,942452400,0.8834596920305732,675.5,-0.011206528497409362,0.8913090358317738,-0.008806534530277223,0.0
3
+ 2,2021-04-01,682276,709.44,678539700,0.886186366941392,667.92999,0.06214724689933459,0.8834596920305732,0.003086360289456685,0.8869850316012463
4
+ 3,2021-05-01,619369,625.21997,625175800,0.8932396112130588,709.44,-0.1187133936626072,0.886186366941392,0.007959098147730066,0.8876285567283414
5
+ 4,2021-06-01,56169,679.70001,519921900,0.8921351734595963,625.21997,0.08713739581926667,0.8932396112130588,-0.0012364406365305593,0.890520383871349
6
+ 5,2021-07-01,19044,687.20001,448449800,0.8929486063079558,679.70001,0.011034279666996032,0.8921351734595963,0.0009117820623585036,0.8927744636602037
7
+ 6,2021-08-01,64,735.71997,381324900,0.8806141242384911,687.20001,0.07060529582937575,0.8929486063079558,-0.01381320490600653,0.8885659680020144
8
+ 7,2021-09-01,7921,775.47998,390171300,0.8813562647680219,735.71997,0.054042314496370085,0.8806141242384911,0.0008427533798331643,0.8849729984381564
9
+ 8,2021-10-01,155236,1114.0,528934600,0.8845597780900558,775.47998,0.4365296703081878,0.8813562647680219,0.0036347541284875644,0.8821767223655229
10
+ 9,2021-11-01,1343281,1144.76001,649111500,0.8937287590337067,1114.0,0.027612217235188478,0.8845597780900558,0.010365586555889553,0.8865482672972614
11
+ 10,2021-12-01,122500,1056.78003,510055900,0.890013679265976,1144.76001,-0.07685451905329928,0.8937287590337067,-0.004156831398988991,0.8894340721299128
12
+ 11,2022-01-01,498436,936.71997,638668800,0.9025504858399248,1056.78003,-0.11360931943424396,0.890013679265976,0.014086083018733339,0.8954309747132024
13
+ 12,2022-02-01,96100,870.42999,463708900,0.8847938576052266,936.71997,-0.07076819340149225,0.9025504858399248,-0.01967383377803372,0.8924526742370423
14
+ 13,2022-03-01,38416,1077.59998,576424300,0.8887287633759635,870.42999,0.23800879149396034,0.8847938576052266,0.004447257106177405,0.8920243689403716
15
+ 14,2022-04-01,198916,870.76001,506986600,0.8823608437995739,1077.59998,-0.19194503882600294,0.8887287633759635,-0.007165200271228026,0.8852944882602546
16
+ 15,2022-05-01,320356,758.26001,649407200,0.9085272860190051,870.76001,-0.1291974811750944,0.8823608437995739,0.029655035582443468,0.8932056310648475
17
+ 16,2022-06-01,107584,673.41998,670166000,0.8913517594337463,758.26001,-0.11188778107921049,0.9085272860190051,-0.01890479994334424,0.8940799630841084
18
+ 17,2022-07-01,19600,752.28998,137580300,0.8903145917824337,673.41998,0.11711859217482677,0.8913517594337463,-0.00116358961581179,0.8967312124117283
images/fourthbrain_logo.png ADDED
images/nvidia_logo.png ADDED
images/reddit_logo.png ADDED
images/tsla_logo.png ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy==1.23.0
2
+ pandas==1.4.2
3
+ Pillow==9.2.0
4
+ plotly==5.9.0
5
+ streamlit==1.10.0