Spaces:
Running
Running
File size: 14,325 Bytes
aa32937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import argparse
import requests
import xml.etree.ElementTree as ET
import pickle
import re
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import spacy
import numpy as np
from tensorflow.keras.preprocessing.sequence import pad_sequences
STOPWORDS = set(stopwords.words('english'))
max_length = 300
trunc_type = 'post'
padding_type = 'post'
from typing import (
Dict,
List,
Tuple,
Set,
Optional,
Any,
Union,
)
# Standardize the abstract by replacing all named entities with their entity label.
# Eg. 3 patients reported at a clinic in England --> CARDINAL patients reported at a clinic in GPE
# expects the spaCy model en_core_web_lg as input
def standardizeAbstract(abstract:str, nlp:Any) -> str:
doc = nlp(abstract)
newAbstract = abstract
for e in reversed(doc.ents):
if e.label_ in {'PERCENT','CARDINAL','GPE','LOC','DATE','TIME','QUANTITY','ORDINAL'}:
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
return newAbstract
# Same as above but replaces biomedical named entities from scispaCy models
# Expects as input en_ner_bc5cdr_md and en_ner_bionlp13cg_md
def standardizeSciTerms(abstract:str, nlpSci:Any, nlpSci2:Any) -> str:
doc = nlpSci(abstract)
newAbstract = abstract
for e in reversed(doc.ents):
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
doc = nlpSci2(newAbstract)
for e in reversed(doc.ents):
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
return newAbstract
# Prepare model
#nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer= init_classify_model()
def init_classify_model(model:str='my_model_orphanet_final') -> Tuple[Any,Any,Any,Any,Any]:
#Load spaCy models
nlp = spacy.load('en_core_web_lg')
nlpSci = spacy.load("en_ner_bc5cdr_md")
nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
# load the tokenizer
with open('tokenizer.pickle', 'rb') as handle:
classify_tokenizer = pickle.load(handle)
# load the model
classify_model = tf.keras.models.load_model(model)
return (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
#Gets abstract and title (concatenated) from EBI API
def PMID_getAb(PMID:Union[int,str]) -> str:
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=EXT_ID:'+str(PMID)+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
titles = [title.text for title in root.iter('title')]
abstracts = [abstract.text for abstract in root.iter('abstractText')]
if len(abstracts) > 0 and len(abstracts[0])>5:
return titles[0]+' '+abstracts[0]
else:
return ''
def search_Pubmed_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('search_Pubmed_API is DEPRECATED. UTILIZE search_NCBI_API for NCBI ENTREZ API results. Utilize search_getAbs for most comprehensive results.')
return search_NCBI_API(searchterm_list, maxResults)
## DEPRECATED, use search_getAbs for more comprehensive results
def search_NCBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('search_NCBI_API is DEPRECATED. Utilize search_getAbs for most comprehensive results.')
pmid_to_abs = {}
i = 0
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
# get results from searching for disease name through PubMed API
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('IdList'):
pmids = [pmid.text for pmid in result.iter('Id')]
if i >= maxResults:
break
for pmid in pmids:
if pmid not in pmid_to_abs.keys():
abstract = PMID_getAb(pmid)
if len(abstract)>5:
pmid_to_abs[pmid]=abstract
i+=1
return pmid_to_abs
## DEPRECATED, use search_getAbs for more comprehensive results
# get results from searching for disease name through EBI API
def search_EBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('DEPRECATED. Utilize search_getAbs for most comprehensive results.')
pmids_abs = {}
i = 0
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
if i >= maxResults:
break
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('result'):
if i >= maxResults:
break
pmids = [pmid.text for pmid in result.iter('id')]
if len(pmids) > 0:
pmid = pmids[0]
if pmid[0].isdigit():
abstracts = [abstract.text for abstract in result.iter('abstractText')]
titles = [title.text for title in result.iter('title')]
if len(abstracts) > 0:# and len(abstracts[0])>5:
pmids_abs[pmid] = titles[0]+' '+abstracts[0]
i+=1
return pmids_abs
## This is the main, most comprehensive search_term function, it can take in a search term or a list of search terms and output a dictionary of {pmids:abstracts}
## Gets results from searching through both PubMed and EBI search term APIs, also makes use of the EBI API for PMIDs.
## EBI API and PubMed API give different results
# This makes n+2 API calls where n<=maxResults, which is slow
# There is a way to optimize by gathering abstracts from the EBI API when also getting pmids but did not pursue due to time constraints
# Filtering can be
# 'strict' - must have some exact match to at leastone of search terms/phrases in text)
# 'lenient' - part of the abstract must match at least one word in the search term phrases.
# 'none'
def search_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
#set of all pmids
pmids = set()
#dictionary {pmid:abstract}
pmid_abs = {}
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
## get pmid results from searching for disease name through PubMed API
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('IdList'):
if len(pmids) >= maxResults:
break
pmidlist = [pmid.text for pmid in result.iter('Id')]
pmids.update(pmidlist)
## get results from searching for disease name through EBI API
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('result'):
if len(pmids) >= maxResults:
break
pmidlist = [pmid.text for pmid in result.iter('id')]
#can also gather abstract and title here but for some reason did not work as intended the first time. Optimize in future versions to reduce latency.
if len(pmidlist) > 0:
pmid = pmidlist[0]
if pmid[0].isdigit():
pmids.add(pmid)
#Construct sets for filtering (right before adding abstract to pmid_abs
# The purpose of this is to do a second check of the abstracts, filters out any abstracts unrelated to the search terms
#if filtering is 'lenient' or default
if filtering !='none' or filtering !='strict':
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
'''
# The above is equivalent to this but uses less memory and may be faster:
#create a single string of the terms within the searchterm_list
joined = ' '.join(searchterm_list)
#remove commas
comma_gone = re.sub(',','',joined)
#split the string into list of words and convert list into a Pythonic set
split = set(comma_gone.split())
#remove the STOPWORDS from the set of key words
key_words = split.difference(STOPWORDS)
#create a new set of the list members in searchterm_list
search_set = set(searchterm_list)
#join the two sets
terms = search_set.union(key_words)
#if any word(s) in the abstract intersect with any of these terms then the abstract is good to go.
'''
## get abstracts from EBI PMID API and output a dictionary
for pmid in pmids:
abstract = PMID_getAb(pmid)
if len(abstract)>5:
#do filtering here
if filtering == 'strict':
uncased_ab = abstract.lower()
for term in searchterm_list:
if term.lower() in uncased_ab:
pmid_abs[pmid] = abstract
break
elif filtering =='none':
pmid_abs[pmid] = abstract
#Default filtering is 'lenient'.
else:
#Else and if are separated for readability and to better understand logical flow.
if set(filter_terms).intersection(set(word_tokenize(abstract))):
pmid_abs[pmid] = abstract
print('Found',len(pmids),'PMIDs. Gathered',len(pmid_abs),'Relevant Abstracts.')
return pmid_abs
# Generate predictions for a PubMed Id
# nlp: en_core_web_lg
# nlpSci: en_ner_bc5cdr_md
# nlpSci2: en_ner_bionlp13cg_md
# Defaults to load my_model_orphanet_final, the most up-to-date version of the classification model,
# but can also be run on any other tf.keras model
#This was originally getPredictions
def getPMIDPredictions(pmid:Union[str,int], classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[str,float,bool]:
nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars
abstract = PMID_getAb(pmid)
if len(abstract)>5:
# remove stopwords
for word in STOPWORDS:
token = ' ' + word + ' '
abstract = abstract.replace(token, ' ')
abstract = abstract.replace(' ', ' ')
# preprocess abstract
abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)]
sequence = classify_tokenizer.texts_to_sequences(abstract_standard)
padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)
y_pred1 = classify_model.predict(padded) # generate prediction
y_pred = np.argmax(y_pred1, axis=1) # get binary prediction
prob = y_pred1[0][1]
if y_pred == 1:
isEpi = True
else:
isEpi = False
return abstract, prob, isEpi
else:
return abstract, 0.0, False
def getTextPredictions(abstract:str, classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[float,bool]:
nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars
if len(abstract)>5:
# remove stopwords
for word in STOPWORDS:
token = ' ' + word + ' '
abstract = abstract.replace(token, ' ')
abstract = abstract.replace(' ', ' ')
# preprocess abstract
abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)]
sequence = classify_tokenizer.texts_to_sequences(abstract_standard)
padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)
y_pred1 = classify_model.predict(padded) # generate prediction
y_pred = np.argmax(y_pred1, axis=1) # get binary prediction
prob = y_pred1[0][1]
if y_pred == 1:
isEpi = True
else:
isEpi = False
return prob, isEpi
else:
return 0.0, False
if __name__ == '__main__':
print('Loading 5 NLP models...')
classify_model_vars= init_classify_model()
print('All models loaded.')
pmid = input('\nEnter PubMed PMID (or DONE): ')
while pmid != 'DONE':
abstract, prob, isEpi = getPredictions(pmid, classify_model_vars)
print(abstract, prob, isEpi)
pmid = input('\nEnter PubMed PMID (or DONE): ') |