wzkariampuzha commited on
Commit
b102419
1 Parent(s): 2360c00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -39,6 +39,13 @@ filtering = st.sidebar.radio("What type of filtering would you like?",('Strict',
39
 
40
  extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
41
 
 
 
 
 
 
 
 
42
  @st.cache(allow_output_mutation=True)
43
  def load_models():
44
  # load the tokenizer
@@ -54,12 +61,14 @@ def load_models():
54
  return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
55
 
56
  with st.spinner('Loading Epidemiology Models and Dependencies...'):
57
- classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
 
 
58
  #Load spaCy models which cannot be cached due to hash function error
59
- nlp = spacy.load('en_core_web_lg')
60
- nlpSci = spacy.load("en_ner_bc5cdr_md")
61
- nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
62
- classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
63
  st.success('All Models and Dependencies Loaded!')
64
 
65
  disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")
 
39
 
40
  extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
41
 
42
+ @st.experimental_singleton
43
+ def load_models_experimental():
44
+ classify_model_vars = classify_abs.init_classify_model()
45
+ NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
46
+ GARD_dict, max_length = extract_abs.load_GARD_diseases()
47
+ return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length
48
+
49
  @st.cache(allow_output_mutation=True)
50
  def load_models():
51
  # load the tokenizer
 
61
  return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
62
 
63
  with st.spinner('Loading Epidemiology Models and Dependencies...'):
64
+ classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
65
+
66
+ #classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
67
  #Load spaCy models which cannot be cached due to hash function error
68
+ #nlp = spacy.load('en_core_web_lg')
69
+ #nlpSci = spacy.load("en_ner_bc5cdr_md")
70
+ #nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
71
+ #classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
72
  st.success('All Models and Dependencies Loaded!')
73
 
74
  disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")