nchen909 commited on
Commit
db6c77c
·
verified ·
1 Parent(s): 94c22f8

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. ggml-common.h +0 -0
  3. ggml-metal.metal +0 -0
  4. main +3 -0
  5. main.cpp +954 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ main filter=lfs diff=lfs merge=lfs -text
ggml-common.h ADDED
The diff for this file is too large to render. See raw diff
 
ggml-metal.metal ADDED
The diff for this file is too large to render. See raw diff
 
main ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349cf33b64ee47606d53bfca53b64b0779f4c6b92c81aeccf04d793265e265fd
3
+ size 1676065
main.cpp ADDED
@@ -0,0 +1,954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "common.h"
2
+
3
+ #include "console.h"
4
+ #include "llama.h"
5
+
6
+ #include <cassert>
7
+ #include <cinttypes>
8
+ #include <cmath>
9
+ #include <cstdio>
10
+ #include <cstring>
11
+ #include <ctime>
12
+ #include <fstream>
13
+ #include <iostream>
14
+ #include <sstream>
15
+ #include <string>
16
+ #include <vector>
17
+
18
+ #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
19
+ #include <signal.h>
20
+ #include <unistd.h>
21
+ #elif defined (_WIN32)
22
+ #define WIN32_LEAN_AND_MEAN
23
+ #ifndef NOMINMAX
24
+ #define NOMINMAX
25
+ #endif
26
+ #include <windows.h>
27
+ #include <signal.h>
28
+ #endif
29
+
30
+ #if defined(_MSC_VER)
31
+ #pragma warning(disable: 4244 4267) // possible loss of data
32
+ #endif
33
+
34
+ static llama_context ** g_ctx;
35
+ static llama_model ** g_model;
36
+ static gpt_params * g_params;
37
+ static std::vector<llama_token> * g_input_tokens;
38
+ static std::ostringstream * g_output_ss;
39
+ static std::vector<llama_token> * g_output_tokens;
40
+ static bool is_interacting = false;
41
+
42
+ static bool file_exists(const std::string &path) {
43
+ std::ifstream f(path.c_str());
44
+ return f.good();
45
+ }
46
+
47
+ static bool file_is_empty(const std::string &path) {
48
+ std::ifstream f;
49
+ f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
50
+ f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
51
+ return f.tellg() == 0;
52
+ }
53
+
54
+ static void write_logfile(
55
+ const llama_context * ctx, const gpt_params & params, const llama_model * model,
56
+ const std::vector<llama_token> & input_tokens, const std::string & output,
57
+ const std::vector<llama_token> & output_tokens
58
+ ) {
59
+ if (params.logdir.empty()) {
60
+ return;
61
+ }
62
+
63
+ const std::string timestamp = get_sortable_timestamp();
64
+
65
+ const bool success = create_directory_with_parents(params.logdir);
66
+ if (!success) {
67
+ fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
68
+ __func__, params.logdir.c_str());
69
+ return;
70
+ }
71
+
72
+ const std::string logfile_path = params.logdir + timestamp + ".yml";
73
+ FILE * logfile = fopen(logfile_path.c_str(), "w");
74
+
75
+ if (logfile == NULL) {
76
+ fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
77
+ return;
78
+ }
79
+
80
+ fprintf(logfile, "binary: main\n");
81
+ char model_desc[128];
82
+ llama_model_desc(model, model_desc, sizeof(model_desc));
83
+ dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
84
+
85
+ fprintf(logfile, "\n");
86
+ fprintf(logfile, "######################\n");
87
+ fprintf(logfile, "# Generation Results #\n");
88
+ fprintf(logfile, "######################\n");
89
+ fprintf(logfile, "\n");
90
+
91
+ dump_string_yaml_multiline(logfile, "output", output.c_str());
92
+ dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
93
+
94
+ llama_dump_timing_info_yaml(logfile, ctx);
95
+ fclose(logfile);
96
+ }
97
+
98
+ #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
99
+ static void sigint_handler(int signo) {
100
+ if (signo == SIGINT) {
101
+ if (!is_interacting && g_params->interactive) {
102
+ is_interacting = true;
103
+ } else {
104
+ console::cleanup();
105
+ printf("\n");
106
+ // llama_print_timings(*g_ctx);
107
+ write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
108
+ _exit(130);
109
+ }
110
+ }
111
+ }
112
+ #endif
113
+
114
+ static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
115
+ (void) level;
116
+ (void) user_data;
117
+ // LOG_TEE("%s", text);
118
+ }
119
+
120
+ int main(int argc, char ** argv) {
121
+ gpt_params params;
122
+ g_params = &params;
123
+
124
+ if (!gpt_params_parse(argc, argv, params)) {
125
+ return 1;
126
+ }
127
+ llama_sampling_params & sparams = params.sparams;
128
+
129
+ #ifndef LOG_DISABLE_LOGS
130
+ log_set_target(log_filename_generator("main", "log"));
131
+ // LOG_TEE("Log start\n");
132
+ log_dump_cmdline(argc, argv);
133
+ llama_log_set(llama_log_callback_logTee, nullptr);
134
+ #endif // LOG_DISABLE_LOGS
135
+
136
+ // TODO: Dump params ?
137
+ //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
138
+
139
+ // save choice to use color for later
140
+ // (note for later: this is a slightly awkward choice)
141
+ console::init(params.simple_io, params.use_color);
142
+ atexit([]() { console::cleanup(); });
143
+
144
+ if (params.logits_all) {
145
+ printf("\n************\n");
146
+ printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
147
+ printf("************\n\n");
148
+
149
+ return 0;
150
+ }
151
+
152
+ if (params.embedding) {
153
+ printf("\n************\n");
154
+ printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
155
+ printf("************\n\n");
156
+
157
+ return 0;
158
+ }
159
+
160
+ if (params.n_ctx != 0 && params.n_ctx < 8) {
161
+ LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
162
+ params.n_ctx = 8;
163
+ }
164
+
165
+ if (params.rope_freq_base != 0.0) {
166
+ LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
167
+ }
168
+
169
+ if (params.rope_freq_scale != 0.0) {
170
+ LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
171
+ }
172
+
173
+ // LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
174
+ // LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
175
+
176
+ if (params.seed == LLAMA_DEFAULT_SEED) {
177
+ params.seed = time(NULL);
178
+ }
179
+
180
+ // LOG_TEE("%s: seed = %u\n", __func__, params.seed);
181
+
182
+ std::mt19937 rng(params.seed);
183
+ if (params.random_prompt) {
184
+ params.prompt = gpt_random_prompt(rng);
185
+ }
186
+
187
+ LOG("%s: llama backend init\n", __func__);
188
+ llama_backend_init();
189
+ llama_numa_init(params.numa);
190
+
191
+ llama_model * model;
192
+ llama_context * ctx;
193
+ llama_context * ctx_guidance = NULL;
194
+ g_model = &model;
195
+ g_ctx = &ctx;
196
+
197
+ // load the model and apply lora adapter, if any
198
+ LOG("%s: load the model and apply lora adapter, if any\n", __func__);
199
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
200
+ if (sparams.cfg_scale > 1.f) {
201
+ struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
202
+ ctx_guidance = llama_new_context_with_model(model, lparams);
203
+ }
204
+
205
+ if (model == NULL) {
206
+ LOG_TEE("%s: error: unable to load model\n", __func__);
207
+ return 1;
208
+ }
209
+
210
+ const int n_ctx_train = llama_n_ctx_train(model);
211
+ const int n_ctx = llama_n_ctx(ctx);
212
+ // LOG("n_ctx: %d\n", n_ctx);
213
+
214
+ if (n_ctx > n_ctx_train) {
215
+ LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
216
+ __func__, n_ctx_train, n_ctx);
217
+ }
218
+
219
+ // print system information
220
+ // {
221
+ // LOG_TEE("\n");
222
+ // LOG_TEE("%s\n", get_system_info(params).c_str());
223
+ // }
224
+
225
+ std::string path_session = params.path_prompt_cache;
226
+ std::vector<llama_token> session_tokens;
227
+
228
+ if (!path_session.empty()) {
229
+ // LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
230
+ if (!file_exists(path_session)) {
231
+ // LOG_TEE("%s: session file does not exist, will create.\n", __func__);
232
+ } else if (file_is_empty(path_session)) {
233
+ // LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
234
+ } else {
235
+ // The file exists and is not empty
236
+ session_tokens.resize(n_ctx);
237
+ size_t n_token_count_out = 0;
238
+ if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
239
+ LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
240
+ return 1;
241
+ }
242
+ session_tokens.resize(n_token_count_out);
243
+ llama_set_rng_seed(ctx, params.seed);
244
+ // LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
245
+ }
246
+ }
247
+
248
+ const bool add_bos = llama_should_add_bos_token(model);
249
+ // LOG("add_bos: %d\n", add_bos);
250
+
251
+ std::vector<llama_token> embd_inp;
252
+
253
+ if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
254
+ LOG("tokenize the prompt\n");
255
+ if (params.chatml) {
256
+ params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
257
+ }
258
+ embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
259
+ } else {
260
+ LOG("use session tokens\n");
261
+ embd_inp = session_tokens;
262
+ }
263
+
264
+ LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
265
+ LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
266
+
267
+ // Should not run without any tokens
268
+ if (embd_inp.empty()) {
269
+ embd_inp.push_back(llama_token_bos(model));
270
+ LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
271
+ }
272
+
273
+ // Tokenize negative prompt
274
+ std::vector<llama_token> guidance_inp;
275
+ int guidance_offset = 0;
276
+ int original_prompt_len = 0;
277
+ if (ctx_guidance) {
278
+ LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
279
+
280
+ guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
281
+ LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
282
+
283
+ std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
284
+ LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
285
+
286
+ original_prompt_len = original_inp.size();
287
+ guidance_offset = (int)guidance_inp.size() - original_prompt_len;
288
+ LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
289
+ LOG("guidance_offset: %s", log_tostr(guidance_offset));
290
+ }
291
+
292
+ if ((int) embd_inp.size() > n_ctx - 4) {
293
+ LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
294
+ return 1;
295
+ }
296
+
297
+ // debug message about similarity of saved session, if applicable
298
+ size_t n_matching_session_tokens = 0;
299
+ if (!session_tokens.empty()) {
300
+ for (llama_token id : session_tokens) {
301
+ if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
302
+ break;
303
+ }
304
+ n_matching_session_tokens++;
305
+ }
306
+ // if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
307
+ // LOG_TEE("%s: using full prompt from session file\n", __func__);
308
+ // } else if (n_matching_session_tokens >= embd_inp.size()) {
309
+ // LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
310
+ // } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
311
+ // LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
312
+ // __func__, n_matching_session_tokens, embd_inp.size());
313
+ // } else {
314
+ // LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
315
+ // __func__, n_matching_session_tokens, embd_inp.size());
316
+ // }
317
+
318
+ // remove any "future" tokens that we might have inherited from the previous session
319
+ llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
320
+ }
321
+
322
+ LOGLN(
323
+ "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
324
+ log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
325
+
326
+ // if we will use the cache for the full prompt without reaching the end of the cache, force
327
+ // reevaluation of the last token token to recalculate the cached logits
328
+ if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
329
+ LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
330
+
331
+ session_tokens.resize(embd_inp.size() - 1);
332
+ }
333
+
334
+ // number of tokens to keep when resetting context
335
+ if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
336
+ params.n_keep = (int)embd_inp.size();
337
+ } else {
338
+ params.n_keep += add_bos; // always keep the BOS token
339
+ }
340
+
341
+ // prefix & suffix for instruct mode
342
+ const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
343
+ const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
344
+
345
+ // LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
346
+ // LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
347
+
348
+ // chatml prefix & suffix
349
+ const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
350
+ const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
351
+
352
+ // LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
353
+ // LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
354
+
355
+ // in instruct mode, we inject a prefix and a suffix to each input by the user
356
+ if (params.instruct) {
357
+ params.interactive_first = true;
358
+ params.antiprompt.emplace_back("### Instruction:\n\n");
359
+ }
360
+ // similar for chatml mode
361
+ else if (params.chatml) {
362
+ params.interactive_first = true;
363
+ params.antiprompt.emplace_back("<|im_start|>user\n");
364
+ }
365
+
366
+ // enable interactive mode if interactive start is specified
367
+ if (params.interactive_first) {
368
+ params.interactive = true;
369
+ }
370
+
371
+ // if (params.verbose_prompt) {
372
+ // LOG_TEE("\n");
373
+ // LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
374
+ // LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
375
+ // for (int i = 0; i < (int) embd_inp.size(); i++) {
376
+ // LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
377
+ // }
378
+
379
+ // if (ctx_guidance) {
380
+ // LOG_TEE("\n");
381
+ // LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
382
+ // LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
383
+ // for (int i = 0; i < (int) guidance_inp.size(); i++) {
384
+ // LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
385
+ // }
386
+ // }
387
+
388
+ // if (params.n_keep > add_bos) {
389
+ // LOG_TEE("%s: static prompt based on n_keep: '", __func__);
390
+ // for (int i = 0; i < params.n_keep; i++) {
391
+ // LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
392
+ // }
393
+ // LOG_TEE("'\n");
394
+ // }
395
+ // LOG_TEE("\n");
396
+ // }
397
+
398
+ // ctrl+C handling
399
+ {
400
+ #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
401
+ struct sigaction sigint_action;
402
+ sigint_action.sa_handler = sigint_handler;
403
+ sigemptyset (&sigint_action.sa_mask);
404
+ sigint_action.sa_flags = 0;
405
+ sigaction(SIGINT, &sigint_action, NULL);
406
+ #elif defined (_WIN32)
407
+ auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
408
+ return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
409
+ };
410
+ SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
411
+ #endif
412
+ }
413
+
414
+ if (params.interactive) {
415
+ // LOG_TEE("%s: interactive mode on.\n", __func__);
416
+
417
+ if (!params.antiprompt.empty()) {
418
+ for (const auto & antiprompt : params.antiprompt) {
419
+ // LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
420
+ if (params.verbose_prompt) {
421
+ auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
422
+ for (int i = 0; i < (int) tmp.size(); i++) {
423
+ // LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
424
+ }
425
+ }
426
+ }
427
+ }
428
+
429
+ // if (params.input_prefix_bos) {
430
+ // LOG_TEE("Input prefix with BOS\n");
431
+ // }
432
+
433
+ // if (!params.input_prefix.empty()) {
434
+ // LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
435
+ // if (params.verbose_prompt) {
436
+ // auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
437
+ // for (int i = 0; i < (int) tmp.size(); i++) {
438
+ // LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
439
+ // }
440
+ // }
441
+ // }
442
+
443
+ // if (!params.input_suffix.empty()) {
444
+ // LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
445
+ // if (params.verbose_prompt) {
446
+ // auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
447
+ // for (int i = 0; i < (int) tmp.size(); i++) {
448
+ // LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
449
+ // }
450
+ // }
451
+ // }
452
+ }
453
+ // LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
454
+ // LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
455
+ // LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
456
+
457
+ // group-attention state
458
+ // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
459
+ int ga_i = 0;
460
+
461
+ const int ga_n = params.grp_attn_n;
462
+ const int ga_w = params.grp_attn_w;
463
+
464
+ if (ga_n != 1) {
465
+ GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
466
+ GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
467
+ //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
468
+ //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
469
+ // LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
470
+ }
471
+ // LOG_TEE("\n\n");
472
+
473
+ if (params.interactive) {
474
+ const char *control_message;
475
+ if (params.multiline_input) {
476
+ control_message = " - To return control to LLaMa, end your input with '\\'.\n"
477
+ " - To return control without starting a new line, end your input with '/'.\n";
478
+ } else {
479
+ control_message = " - Press Return to return control to LLaMa.\n"
480
+ " - To return control without starting a new line, end your input with '/'.\n"
481
+ " - If you want to submit another line, end your input with '\\'.\n";
482
+ }
483
+ // LOG_TEE("== Running in interactive mode. ==\n");
484
+ // #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
485
+ // // LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
486
+ // #endif
487
+ // LOG_TEE( "%s\n", control_message);
488
+
489
+ is_interacting = params.interactive_first;
490
+ }
491
+
492
+ bool is_antiprompt = false;
493
+ bool input_echo = true;
494
+ bool display = true;
495
+ bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
496
+
497
+ int n_past = 0;
498
+ int n_remain = params.n_predict;
499
+ int n_consumed = 0;
500
+ int n_session_consumed = 0;
501
+ int n_past_guidance = 0;
502
+
503
+ std::vector<int> input_tokens; g_input_tokens = &input_tokens;
504
+ std::vector<int> output_tokens; g_output_tokens = &output_tokens;
505
+ std::ostringstream output_ss; g_output_ss = &output_ss;
506
+
507
+ // the first thing we will do is to output the prompt, so set color accordingly
508
+ console::set_display(console::prompt);
509
+ display = params.display_prompt;
510
+
511
+ std::vector<llama_token> embd;
512
+ std::vector<llama_token> embd_guidance;
513
+
514
+ // tokenized antiprompts
515
+ std::vector<std::vector<llama_token>> antiprompt_ids;
516
+
517
+ antiprompt_ids.reserve(params.antiprompt.size());
518
+ for (const std::string & antiprompt : params.antiprompt) {
519
+ antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
520
+ }
521
+
522
+ struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
523
+
524
+ while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
525
+ // predict
526
+ if (!embd.empty()) {
527
+ // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
528
+ // --prompt or --file which uses the same value.
529
+ int max_embd_size = n_ctx - 4;
530
+
531
+ // Ensure the input doesn't exceed the context size by truncating embd if necessary.
532
+ if ((int) embd.size() > max_embd_size) {
533
+ const int skipped_tokens = (int) embd.size() - max_embd_size;
534
+ embd.resize(max_embd_size);
535
+
536
+ console::set_display(console::error);
537
+ printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
538
+ console::set_display(console::reset);
539
+ fflush(stdout);
540
+ }
541
+
542
+ if (ga_n == 1) {
543
+ // infinite text generation via context shifting
544
+ // if we run out of context:
545
+ // - take the n_keep first tokens from the original prompt (via n_past)
546
+ // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
547
+ if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
548
+ if (params.n_predict == -2) {
549
+ // LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
550
+ break;
551
+ }
552
+
553
+ const int n_left = n_past - params.n_keep;
554
+ const int n_discard = n_left/2;
555
+
556
+ LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
557
+ n_past, n_left, n_ctx, params.n_keep, n_discard);
558
+
559
+ llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
560
+ llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
561
+
562
+ n_past -= n_discard;
563
+
564
+ if (ctx_guidance) {
565
+ n_past_guidance -= n_discard;
566
+ }
567
+
568
+ LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
569
+
570
+ LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
571
+
572
+ LOG("clear session path\n");
573
+ path_session.clear();
574
+ }
575
+ } else {
576
+ // context extension via Self-Extend
577
+ while (n_past >= ga_i + ga_w) {
578
+ const int ib = (ga_n*ga_i)/ga_w;
579
+ const int bd = (ga_w/ga_n)*(ga_n - 1);
580
+ const int dd = (ga_w/ga_n) - ib*bd - ga_w;
581
+
582
+ LOG("\n");
583
+ LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
584
+ LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
585
+ LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
586
+
587
+ llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
588
+ llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
589
+ llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
590
+
591
+ n_past -= bd;
592
+
593
+ ga_i += ga_w/ga_n;
594
+
595
+ LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
596
+ }
597
+ }
598
+
599
+ // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
600
+ if (n_session_consumed < (int) session_tokens.size()) {
601
+ size_t i = 0;
602
+ for ( ; i < embd.size(); i++) {
603
+ if (embd[i] != session_tokens[n_session_consumed]) {
604
+ session_tokens.resize(n_session_consumed);
605
+ break;
606
+ }
607
+
608
+ n_past++;
609
+ n_session_consumed++;
610
+
611
+ if (n_session_consumed >= (int) session_tokens.size()) {
612
+ ++i;
613
+ break;
614
+ }
615
+ }
616
+ if (i > 0) {
617
+ embd.erase(embd.begin(), embd.begin() + i);
618
+ }
619
+ }
620
+
621
+ // evaluate tokens in batches
622
+ // embd is typically prepared beforehand to fit within a batch, but not always
623
+ if (ctx_guidance) {
624
+ int input_size = 0;
625
+ llama_token * input_buf = NULL;
626
+
627
+ if (n_past_guidance < (int) guidance_inp.size()) {
628
+ // Guidance context should have the same data with these modifications:
629
+ //
630
+ // * Replace the initial prompt
631
+ // * Shift everything by guidance_offset
632
+ embd_guidance = guidance_inp;
633
+ if (embd.begin() + original_prompt_len < embd.end()) {
634
+ embd_guidance.insert(
635
+ embd_guidance.end(),
636
+ embd.begin() + original_prompt_len,
637
+ embd.end()
638
+ );
639
+ }
640
+
641
+ input_buf = embd_guidance.data();
642
+ input_size = embd_guidance.size();
643
+
644
+ LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
645
+ } else {
646
+ input_buf = embd.data();
647
+ input_size = embd.size();
648
+ }
649
+
650
+ for (int i = 0; i < input_size; i += params.n_batch) {
651
+ int n_eval = std::min(input_size - i, params.n_batch);
652
+ if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
653
+ // LOG_TEE("%s : failed to eval\n", __func__);
654
+ return 1;
655
+ }
656
+
657
+ n_past_guidance += n_eval;
658
+ }
659
+ }
660
+
661
+ for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
662
+ int n_eval = (int) embd.size() - i;
663
+ if (n_eval > params.n_batch) {
664
+ n_eval = params.n_batch;
665
+ }
666
+
667
+ LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
668
+
669
+ if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
670
+ LOG_TEE("%s : failed to eval\n", __func__);
671
+ return 1;
672
+ }
673
+
674
+ n_past += n_eval;
675
+
676
+ // LOG("n_past = %d\n", n_past);
677
+ // Display total tokens alongside total time
678
+ // if (params.n_print > 0 && n_past % params.n_print == 0) {
679
+ // LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
680
+ // }
681
+ }
682
+
683
+ if (!embd.empty() && !path_session.empty()) {
684
+ session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
685
+ n_session_consumed = session_tokens.size();
686
+ }
687
+ }
688
+
689
+ embd.clear();
690
+ embd_guidance.clear();
691
+
692
+ if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
693
+ // optionally save the session on first sample (for faster prompt loading next time)
694
+ if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
695
+ need_to_save_session = false;
696
+ llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
697
+
698
+ LOG("saved session to %s\n", path_session.c_str());
699
+ }
700
+
701
+ const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
702
+
703
+ llama_sampling_accept(ctx_sampling, ctx, id, true);
704
+
705
+ LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
706
+
707
+ embd.push_back(id);
708
+
709
+ // echo this to console
710
+ input_echo = true;
711
+
712
+ // decrement remaining sampling budget
713
+ --n_remain;
714
+
715
+ LOG("n_remain: %d\n", n_remain);
716
+ } else {
717
+ // some user input remains from prompt or interaction, forward it to processing
718
+ LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
719
+ while ((int) embd_inp.size() > n_consumed) {
720
+ embd.push_back(embd_inp[n_consumed]);
721
+
722
+ // push the prompt in the sampling context in order to apply repetition penalties later
723
+ // for the prompt, we don't apply grammar rules
724
+ llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
725
+
726
+ ++n_consumed;
727
+ if ((int) embd.size() >= params.n_batch) {
728
+ break;
729
+ }
730
+ }
731
+ }
732
+
733
+ // display text
734
+ if (input_echo && display) {
735
+ for (auto id : embd) {
736
+ const std::string token_str = llama_token_to_piece(ctx, id);
737
+ printf("%s", token_str.c_str());
738
+
739
+ if (embd.size() > 1) {
740
+ input_tokens.push_back(id);
741
+ } else {
742
+ output_tokens.push_back(id);
743
+ output_ss << token_str;
744
+ }
745
+ }
746
+ fflush(stdout);
747
+ }
748
+ // reset color to default if there is no pending user input
749
+ if (input_echo && (int) embd_inp.size() == n_consumed) {
750
+ console::set_display(console::reset);
751
+ display = true;
752
+ }
753
+
754
+ // if not currently processing queued inputs;
755
+ if ((int) embd_inp.size() <= n_consumed) {
756
+ // check for reverse prompt in the last n_prev tokens
757
+ if (!params.antiprompt.empty()) {
758
+ const int n_prev = 32;
759
+ const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
760
+
761
+ is_antiprompt = false;
762
+ // Check if each of the reverse prompts appears at the end of the output.
763
+ // If we're not running interactively, the reverse prompt might be tokenized with some following characters
764
+ // so we'll compensate for that by widening the search window a bit.
765
+ for (std::string & antiprompt : params.antiprompt) {
766
+ size_t extra_padding = params.interactive ? 0 : 2;
767
+ size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
768
+ ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
769
+ : 0;
770
+
771
+ if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
772
+ if (params.interactive) {
773
+ is_interacting = true;
774
+ }
775
+ is_antiprompt = true;
776
+ break;
777
+ }
778
+ }
779
+
780
+ // check for reverse prompt using special tokens
781
+ llama_token last_token = llama_sampling_last(ctx_sampling);
782
+ for (std::vector<llama_token> ids : antiprompt_ids) {
783
+ if (ids.size() == 1 && last_token == ids[0]) {
784
+ if (params.interactive) {
785
+ is_interacting = true;
786
+ }
787
+ is_antiprompt = true;
788
+ break;
789
+ }
790
+ }
791
+
792
+ if (is_antiprompt) {
793
+ LOG("found antiprompt: %s\n", last_output.c_str());
794
+ }
795
+ }
796
+
797
+ // deal with end of text token in interactive mode
798
+ if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
799
+ LOG("found EOS token\n");
800
+
801
+ if (params.interactive) {
802
+ if (!params.antiprompt.empty()) {
803
+ // tokenize and inject first reverse prompt
804
+ const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
805
+ embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
806
+ is_antiprompt = true;
807
+ }
808
+
809
+ is_interacting = true;
810
+ printf("\n");
811
+ } else if (params.instruct || params.chatml) {
812
+ is_interacting = true;
813
+ }
814
+ }
815
+
816
+ if (n_past > 0 && is_interacting) {
817
+ LOG("waiting for user input\n");
818
+
819
+ if (params.instruct || params.chatml) {
820
+ printf("\n> ");
821
+ }
822
+
823
+ if (params.input_prefix_bos) {
824
+ LOG("adding input prefix BOS token\n");
825
+ embd_inp.push_back(llama_token_bos(model));
826
+ }
827
+
828
+ std::string buffer;
829
+ if (!params.input_prefix.empty()) {
830
+ LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
831
+ printf("%s", params.input_prefix.c_str());
832
+ }
833
+
834
+ // color user input only
835
+ console::set_display(console::user_input);
836
+ display = params.display_prompt;
837
+
838
+ std::string line;
839
+ bool another_line = true;
840
+ do {
841
+ another_line = console::readline(line, params.multiline_input);
842
+ buffer += line;
843
+ } while (another_line);
844
+
845
+ // done taking input, reset color
846
+ console::set_display(console::reset);
847
+ display = true;
848
+
849
+ // Add tokens to embd only if the input buffer is non-empty
850
+ // Entering a empty line lets the user pass control back
851
+ if (buffer.length() > 1) {
852
+ // append input suffix if any
853
+ if (!params.input_suffix.empty()) {
854
+ LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
855
+ printf("%s", params.input_suffix.c_str());
856
+ }
857
+
858
+ LOG("buffer: '%s'\n", buffer.c_str());
859
+
860
+ const size_t original_size = embd_inp.size();
861
+
862
+ // instruct mode: insert instruction prefix
863
+ if (params.instruct && !is_antiprompt) {
864
+ LOG("inserting instruction prefix\n");
865
+ n_consumed = embd_inp.size();
866
+ embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
867
+ }
868
+ // chatml mode: insert user chat prefix
869
+ if (params.chatml && !is_antiprompt) {
870
+ LOG("inserting chatml prefix\n");
871
+ n_consumed = embd_inp.size();
872
+ embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
873
+ }
874
+ if (params.escape) {
875
+ process_escapes(buffer);
876
+ }
877
+
878
+ const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
879
+ const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
880
+ const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
881
+
882
+ LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
883
+
884
+ embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
885
+ embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
886
+ embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
887
+
888
+ // instruct mode: insert response suffix
889
+ if (params.instruct) {
890
+ LOG("inserting instruction suffix\n");
891
+ embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
892
+ }
893
+ // chatml mode: insert assistant chat suffix
894
+ if (params.chatml) {
895
+ LOG("inserting chatml suffix\n");
896
+ embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
897
+ }
898
+
899
+ for (size_t i = original_size; i < embd_inp.size(); ++i) {
900
+ const llama_token token = embd_inp[i];
901
+ output_tokens.push_back(token);
902
+ output_ss << llama_token_to_piece(ctx, token);
903
+ }
904
+
905
+ n_remain -= line_inp.size();
906
+ LOG("n_remain: %d\n", n_remain);
907
+ } else {
908
+ LOG("empty line, passing control back\n");
909
+ }
910
+
911
+ input_echo = false; // do not echo this again
912
+ }
913
+
914
+ if (n_past > 0) {
915
+ if (is_interacting) {
916
+ llama_sampling_reset(ctx_sampling);
917
+ }
918
+ is_interacting = false;
919
+ }
920
+ }
921
+
922
+ // end of text token
923
+ if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
924
+ // LOG_TEE(" [end of text]\n");
925
+ break;
926
+ }
927
+
928
+ // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
929
+ // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
930
+ if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
931
+ n_remain = params.n_predict;
932
+ is_interacting = true;
933
+ }
934
+ }
935
+
936
+ if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
937
+ // LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
938
+ llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
939
+ }
940
+
941
+ // llama_print_timings(ctx);
942
+ write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
943
+
944
+ if (ctx_guidance) { llama_free(ctx_guidance); }
945
+ llama_free(ctx);
946
+ llama_free_model(model);
947
+
948
+ llama_sampling_free(ctx_sampling);
949
+ llama_backend_free();
950
+
951
+
952
+
953
+ return 0;
954
+ }