ncoop57
Get minimum working openai server
bab8078
import json
import random
import string
import time
import os
import torch
import numpy as np
import tritonclient.grpc as client_util
from tokenizers import Tokenizer
from tritonclient.utils import np_to_triton_dtype, InferenceServerException
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
np.finfo(np.dtype("float32"))
np.finfo(np.dtype("float64"))
token = os.environ.get("HUB_TOKEN", None)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("bigcode/christmas-models", use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained("bigcode/christmas-models", trust_remote_code=True, use_auth_token=token).to(device)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
class CodeGenProxy:
def __init__(self, host: str = 'triton', port: int = 8001, verbose: bool = False):
self.tokenizer = AutoTokenizer.from_pretrained("bigcode/christmas-models", use_auth_token=token)
self.client = client_util.InferenceServerClient(url=f'{host}:{port}', verbose=verbose)
self.PAD_CHAR = 50256
# Max number of tokens the model can handle
self.MAX_MODEL_LEN = 2048
class TokensExceedsMaximum(Exception):
pass
@staticmethod
def prepare_tensor(name: str, tensor_input):
t = client_util.InferInput(
name, tensor_input.shape, np_to_triton_dtype(tensor_input.dtype))
t.set_data_from_numpy(tensor_input)
return t
@staticmethod
def trim_with_stopwords(output: str, stopwords: list) -> str:
for w in sorted(stopwords, key=len, reverse=True):
if output.endswith(w):
output = output[:-len(w)]
break
return output
@staticmethod
def to_word_list_format(word_dict, tokenizer):
flat_ids = []
offsets = []
for word_dict_item in word_dict:
item_flat_ids = []
item_offsets = []
for word in word_dict_item:
ids = tokenizer.encode(word)
if len(ids) == 0:
continue
item_flat_ids += ids
item_offsets.append(len(ids))
# Hack, can we do this better?
if word == '\n\n':
item_flat_ids += [198, 198]
item_offsets.append(2)
flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))
def generate(self, data):
global pipe
prompt = data['prompt']
n = data.get('n', 1)
model_name = data["model"]
choices = []
text = pipe(prompt, do_sample=True, top_p=0.95, max_new_tokens=50)[0]['generated_text']
choice = {
'text': text,
'index': 0,
'finish_reason': "stop",
'logprobs': None,
}
choices.append(choice)
completion = {
'id': None, # fill in
'model': 'codegen',
'object': 'text_completion',
'created': int(time.time()),
'choices': None, # fill in
'usage': {
'completion_tokens': int(50),
'prompt_tokens': int(50),
'total_tokens': int(100),
}
}
return completion, choices
@staticmethod
def random_completion_id():
return 'cmpl-' + ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(29))
def streamed_response(self, completion, choices):
for c in choices:
completion['id'] = self.random_completion_id()
completion['choices'] = [c]
yield f'data: {json.dumps(completion)}\n\n'
yield 'data: [DONE]\n\n'
def non_streamed_response(self, completion, choices) -> str:
completion['id'] = self.random_completion_id()
completion['choices'] = choices
return json.dumps(completion)
def __call__(self, data: dict):
st = time.time()
try:
completion, choices = self.generate(data)
except InferenceServerException as E:
print(E)
completion = {}
choices = []
ed = time.time()
print(f"Returned completion in {(ed - st) * 1000} ms")
if data.get('stream', False):
return self.streamed_response(completion, choices)
else:
return self.non_streamed_response(completion, choices)