Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,287 +1,460 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
from
|
10 |
-
from
|
11 |
-
|
12 |
-
from
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
-
from
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
""
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
""
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
""
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
{
|
202 |
-
"role": "system",
|
203 |
-
"content": DEFAULT_SYSTEM_PROMPT,
|
204 |
-
}
|
205 |
-
] + messages
|
206 |
-
messages = [
|
207 |
-
{
|
208 |
-
"role": messages[1]["role"],
|
209 |
-
"content": B_SYS + messages[0]["content"] + E_SYS + messages[1]["content"],
|
210 |
-
}
|
211 |
-
] + messages[2:]
|
212 |
-
|
213 |
-
messages_list = [
|
214 |
-
f"{BOS}{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} {EOS}"
|
215 |
-
for prompt, answer in zip(messages[::2], messages[1::2])
|
216 |
-
]
|
217 |
-
messages_list.append(
|
218 |
-
f"{BOS}{B_INST} {(messages[-1]['content']).strip()} {E_INST}")
|
219 |
-
|
220 |
-
return "".join(messages_list)
|
221 |
-
|
222 |
-
|
223 |
-
def extract_userquesion_part_only(content):
|
224 |
-
"""
|
225 |
-
Function to extract only the user question part from the entire question
|
226 |
-
content combining user question and pdf context.
|
227 |
-
"""
|
228 |
-
content_split = content.split("[][][][]")
|
229 |
-
if len(content_split) == 3:
|
230 |
-
return content_split[1]
|
231 |
-
return content
|
232 |
-
|
233 |
-
|
234 |
-
def main() -> None:
|
235 |
-
_ = load_dotenv(find_dotenv())
|
236 |
-
|
237 |
-
init_page()
|
238 |
-
|
239 |
-
model_name, temperature = select_llm()
|
240 |
-
llm = load_llm(model_name, temperature)
|
241 |
-
embeddings = load_embeddings(model_name)
|
242 |
-
|
243 |
-
texts = get_pdf_text()
|
244 |
-
qdrant = build_vectore_store(texts, embeddings)
|
245 |
-
|
246 |
-
init_messages()
|
247 |
-
|
248 |
-
st.header("Personal ChatGPT")
|
249 |
-
# Supervise user input
|
250 |
-
if user_input := st.chat_input("Input your question!"):
|
251 |
-
if qdrant:
|
252 |
-
context = [c.page_content for c in qdrant.similarity_search(
|
253 |
-
user_input, k=10)]
|
254 |
-
user_input_w_context = PromptTemplate(
|
255 |
-
template=PROMPT_TEMPLATE,
|
256 |
-
input_variables=["context", "question"]) \
|
257 |
-
.format(
|
258 |
-
context=context, question=user_input)
|
259 |
-
else:
|
260 |
-
user_input_w_context = user_input
|
261 |
-
st.session_state.messages.append(
|
262 |
-
HumanMessage(content=user_input_w_context))
|
263 |
-
with st.spinner("ChatGPT is typing ..."):
|
264 |
-
answer, cost = get_answer(llm, st.session_state.messages)
|
265 |
-
st.session_state.messages.append(AIMessage(content=answer))
|
266 |
-
st.session_state.costs.append(cost)
|
267 |
-
|
268 |
-
# Display chat history
|
269 |
-
messages = st.session_state.get("messages", [])
|
270 |
-
for message in messages:
|
271 |
-
if isinstance(message, AIMessage):
|
272 |
-
with st.chat_message("assistant"):
|
273 |
-
st.markdown(message.content)
|
274 |
-
elif isinstance(message, HumanMessage):
|
275 |
-
with st.chat_message("user"):
|
276 |
-
st.markdown(extract_userquesion_part_only(message.content))
|
277 |
-
|
278 |
-
costs = st.session_state.get("costs", [])
|
279 |
-
st.sidebar.markdown("## Costs")
|
280 |
-
st.sidebar.markdown(f"**Total cost: ${sum(costs):.5f}**")
|
281 |
-
for cost in costs:
|
282 |
-
st.sidebar.markdown(f"- ${cost:.5f}")
|
283 |
-
|
284 |
-
|
285 |
-
# streamlit run app.py
|
286 |
-
if __name__ == "__main__":
|
287 |
-
main()
|
|
|
1 |
+
"""Run codes."""
|
2 |
+
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
|
3 |
+
# ruff: noqa: E501
|
4 |
+
import gc
|
5 |
+
import os
|
6 |
+
import platform
|
7 |
+
import random
|
8 |
+
import time
|
9 |
+
from dataclasses import asdict, dataclass
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# from types import SimpleNamespace
|
13 |
+
import gradio as gr
|
14 |
+
import psutil
|
15 |
+
from about_time import about_time
|
16 |
+
from ctransformers import AutoModelForCausalLM
|
17 |
+
from dl_hf_model import dl_hf_model
|
18 |
+
from loguru import logger
|
19 |
+
|
20 |
+
filename_list = [
|
21 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q2_K.bin",
|
22 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_L.bin",
|
23 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_M.bin",
|
24 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_S.bin",
|
25 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin",
|
26 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin",
|
27 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin",
|
28 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_S.bin",
|
29 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin",
|
30 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_1.bin",
|
31 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_M.bin",
|
32 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_S.bin",
|
33 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q6_K.bin",
|
34 |
+
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q8_0.bin",
|
35 |
+
]
|
36 |
+
|
37 |
+
URL = "https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML/raw/main/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin" # 4.05G
|
38 |
+
|
39 |
+
url = "https://huggingface.co/savvamadar/ggml-gpt4all-j-v1.3-groovy/blob/main/ggml-gpt4all-j-v1.3-groovy.bin"
|
40 |
+
url = "https://huggingface.co/TheBloke/Llama-2-13B-GGML/blob/main/llama-2-13b.ggmlv3.q4_K_S.bin" # 7.37G
|
41 |
+
# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.bin"
|
42 |
+
url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.bin" # 6.93G
|
43 |
+
# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.binhttps://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q4_K_M.bin" # 7.87G
|
44 |
+
|
45 |
+
url = "https://huggingface.co/localmodels/Llama-2-13B-Chat-ggml/blob/main/llama-2-13b-chat.ggmlv3.q4_K_S.bin" # 7.37G
|
46 |
+
|
47 |
+
_ = (
|
48 |
+
"golay" in platform.node()
|
49 |
+
or "okteto" in platform.node()
|
50 |
+
or Path("/kaggle").exists()
|
51 |
+
# or psutil.cpu_count(logical=False) < 4
|
52 |
+
or 1 # run 7b in hf
|
53 |
+
)
|
54 |
+
|
55 |
+
if _:
|
56 |
+
# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q2_K.bin"
|
57 |
+
url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q2_K.bin" # 2.87G
|
58 |
+
url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q4_K_M.bin" # 2.87G
|
59 |
+
|
60 |
+
|
61 |
+
prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
62 |
+
### Instruction: {user_prompt}
|
63 |
+
### Response:
|
64 |
+
"""
|
65 |
+
|
66 |
+
prompt_template = """System: You are a helpful,
|
67 |
+
respectful and honest assistant. Always answer as
|
68 |
+
helpfully as possible, while being safe. Your answers
|
69 |
+
should not include any harmful, unethical, racist,
|
70 |
+
sexist, toxic, dangerous, or illegal content. Please
|
71 |
+
ensure that your responses are socially unbiased and
|
72 |
+
positive in nature. If a question does not make any
|
73 |
+
sense, or is not factually coherent, explain why instead
|
74 |
+
of answering something not correct. If you don't know
|
75 |
+
the answer to a question, please don't share false
|
76 |
+
information.
|
77 |
+
User: {prompt}
|
78 |
+
Assistant: """
|
79 |
+
|
80 |
+
prompt_template = """System: You are a helpful assistant.
|
81 |
+
User: {prompt}
|
82 |
+
Assistant: """
|
83 |
+
|
84 |
+
prompt_template = """Question: {question}
|
85 |
+
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
|
86 |
+
|
87 |
+
prompt_template = """[INST] <>
|
88 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step.
|
89 |
+
<>
|
90 |
+
What NFL team won the Super Bowl in the year Justin Bieber was born?
|
91 |
+
[/INST]"""
|
92 |
+
|
93 |
+
prompt_template = """[INST] <<SYS>>
|
94 |
+
You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <</SYS>>
|
95 |
+
{question} [/INST]
|
96 |
+
"""
|
97 |
+
|
98 |
+
prompt_template = """[INST] <<SYS>>
|
99 |
+
You are a helpful assistant.
|
100 |
+
<</SYS>>
|
101 |
+
{question} [/INST]
|
102 |
+
"""
|
103 |
+
|
104 |
+
_ = [elm for elm in prompt_template.splitlines() if elm.strip()]
|
105 |
+
stop_string = [elm.split(":")[0] + ":" for elm in _][-2]
|
106 |
+
|
107 |
+
logger.debug(f"{stop_string=}")
|
108 |
+
|
109 |
+
_ = psutil.cpu_count(logical=False) - 1
|
110 |
+
cpu_count: int = int(_) if _ else 1
|
111 |
+
logger.debug(f"{cpu_count=}")
|
112 |
+
|
113 |
+
LLM = None
|
114 |
+
gc.collect()
|
115 |
+
|
116 |
+
try:
|
117 |
+
model_loc, file_size = dl_hf_model(url)
|
118 |
+
except Exception as exc_:
|
119 |
+
logger.error(exc_)
|
120 |
+
raise SystemExit(1) from exc_
|
121 |
+
|
122 |
+
LLM = AutoModelForCausalLM.from_pretrained(
|
123 |
+
model_loc,
|
124 |
+
model_type="llama",
|
125 |
+
# threads=cpu_count,
|
126 |
+
)
|
127 |
+
|
128 |
+
logger.info(f"done load llm {model_loc=} {file_size=}G")
|
129 |
+
|
130 |
+
os.environ["TZ"] = "Asia/Shanghai"
|
131 |
+
try:
|
132 |
+
time.tzset() # type: ignore # pylint: disable=no-member
|
133 |
+
except Exception:
|
134 |
+
# Windows
|
135 |
+
logger.warning("Windows, cant run time.tzset()")
|
136 |
+
|
137 |
+
_ = """
|
138 |
+
ns = SimpleNamespace(
|
139 |
+
response="",
|
140 |
+
generator=(_ for _ in []),
|
141 |
+
)
|
142 |
+
# """
|
143 |
+
|
144 |
+
@dataclass
|
145 |
+
class GenerationConfig:
|
146 |
+
temperature: float = 0.7
|
147 |
+
top_k: int = 50
|
148 |
+
top_p: float = 0.9
|
149 |
+
repetition_penalty: float = 1.0
|
150 |
+
max_new_tokens: int = 512
|
151 |
+
seed: int = 42
|
152 |
+
reset: bool = False
|
153 |
+
stream: bool = True
|
154 |
+
# threads: int = cpu_count
|
155 |
+
# stop: list[str] = field(default_factory=lambda: [stop_string])
|
156 |
+
|
157 |
+
|
158 |
+
def generate(
|
159 |
+
question: str,
|
160 |
+
llm=LLM,
|
161 |
+
config: GenerationConfig = GenerationConfig(),
|
162 |
+
):
|
163 |
+
"""Run model inference, will return a Generator if streaming is true."""
|
164 |
+
# _ = prompt_template.format(question=question)
|
165 |
+
# print(_)
|
166 |
+
|
167 |
+
prompt = prompt_template.format(question=question)
|
168 |
+
|
169 |
+
return llm(
|
170 |
+
prompt,
|
171 |
+
**asdict(config),
|
172 |
)
|
173 |
+
|
174 |
+
|
175 |
+
logger.debug(f"{asdict(GenerationConfig())=}")
|
176 |
+
|
177 |
+
|
178 |
+
def user(user_message, history):
|
179 |
+
# return user_message, history + [[user_message, None]]
|
180 |
+
history.append([user_message, None])
|
181 |
+
return user_message, history # keep user_message
|
182 |
+
|
183 |
+
|
184 |
+
def user1(user_message, history):
|
185 |
+
# return user_message, history + [[user_message, None]]
|
186 |
+
history.append([user_message, None])
|
187 |
+
return "", history # clear user_message
|
188 |
+
|
189 |
+
|
190 |
+
def bot_(history):
|
191 |
+
user_message = history[-1][0]
|
192 |
+
resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
|
193 |
+
bot_message = user_message + ": " + resp
|
194 |
+
history[-1][1] = ""
|
195 |
+
for character in bot_message:
|
196 |
+
history[-1][1] += character
|
197 |
+
time.sleep(0.02)
|
198 |
+
yield history
|
199 |
+
|
200 |
+
history[-1][1] = resp
|
201 |
+
yield history
|
202 |
+
|
203 |
+
|
204 |
+
def bot(history):
|
205 |
+
user_message = history[-1][0]
|
206 |
+
response = []
|
207 |
+
|
208 |
+
logger.debug(f"{user_message=}")
|
209 |
+
|
210 |
+
with about_time() as atime: # type: ignore
|
211 |
+
flag = 1
|
212 |
+
prefix = ""
|
213 |
+
then = time.time()
|
214 |
+
|
215 |
+
logger.debug("about to generate")
|
216 |
+
|
217 |
+
config = GenerationConfig(reset=True)
|
218 |
+
for elm in generate(user_message, config=config):
|
219 |
+
if flag == 1:
|
220 |
+
logger.debug("in the loop")
|
221 |
+
prefix = f"({time.time() - then:.2f}s) "
|
222 |
+
flag = 0
|
223 |
+
print(prefix, end="", flush=True)
|
224 |
+
logger.debug(f"{prefix=}")
|
225 |
+
print(elm, end="", flush=True)
|
226 |
+
# logger.debug(f"{elm}")
|
227 |
+
|
228 |
+
response.append(elm)
|
229 |
+
history[-1][1] = prefix + "".join(response)
|
230 |
+
yield history
|
231 |
+
|
232 |
+
_ = (
|
233 |
+
f"(time elapsed: {atime.duration_human}, " # type: ignore
|
234 |
+
f"{atime.duration/len(''.join(response)):.2f}s/char)" # type: ignore
|
235 |
)
|
236 |
+
|
237 |
+
history[-1][1] = "".join(response) + f"\n{_}"
|
238 |
+
yield history
|
239 |
+
|
240 |
+
|
241 |
+
def predict_api(prompt):
|
242 |
+
logger.debug(f"{prompt=}")
|
243 |
+
try:
|
244 |
+
# user_prompt = prompt
|
245 |
+
config = GenerationConfig(
|
246 |
+
temperature=0.2,
|
247 |
+
top_k=10,
|
248 |
+
top_p=0.9,
|
249 |
+
repetition_penalty=1.0,
|
250 |
+
max_new_tokens=512, # adjust as needed
|
251 |
+
seed=42,
|
252 |
+
reset=True, # reset history (cache)
|
253 |
+
stream=False,
|
254 |
+
# threads=cpu_count,
|
255 |
+
# stop=prompt_prefix[1:2],
|
256 |
+
)
|
257 |
+
|
258 |
+
response = generate(
|
259 |
+
prompt,
|
260 |
+
config=config,
|
261 |
+
)
|
262 |
+
|
263 |
+
logger.debug(f"api: {response=}")
|
264 |
+
except Exception as exc:
|
265 |
+
logger.error(exc)
|
266 |
+
response = f"{exc=}"
|
267 |
+
# bot = {"inputs": [response]}
|
268 |
+
# bot = [(prompt, response)]
|
269 |
+
|
270 |
+
return response
|
271 |
+
|
272 |
+
|
273 |
+
css = """
|
274 |
+
.importantButton {
|
275 |
+
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
276 |
+
border: none !important;
|
277 |
+
}
|
278 |
+
.importantButton:hover {
|
279 |
+
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
|
280 |
+
border: none !important;
|
281 |
+
}
|
282 |
+
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
|
283 |
+
.xsmall {font-size: x-small;}
|
284 |
+
"""
|
285 |
+
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
|
286 |
+
examples_list = [
|
287 |
+
["What NFL team won the Super Bowl in the year Justin Bieber was born?"],
|
288 |
+
[
|
289 |
+
"What NFL team won the Super Bowl in the year Justin Bieber was born? Think step by step."
|
290 |
+
],
|
291 |
+
["How to pick a lock? Provide detailed steps."],
|
292 |
+
["If it takes 10 hours to dry 10 clothes, assuming all the clothes are hung together at the same time for drying , then how long will it take to dry a cloth?"],
|
293 |
+
["is infinity + 1 bigger than infinity?"],
|
294 |
+
["Explain the plot of Cinderella in a sentence."],
|
295 |
+
[
|
296 |
+
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
|
297 |
+
],
|
298 |
+
["What are some common mistakes to avoid when writing code?"],
|
299 |
+
["Build a prompt to generate a beautiful portrait of a horse"],
|
300 |
+
["Suggest four metaphors to describe the benefits of AI"],
|
301 |
+
["Write a pop song about leaving home for the sandy beaches."],
|
302 |
+
["Write a summary demonstrating my ability to tame lions"],
|
303 |
+
["鲁迅和周树人什么关系? 说中文。"],
|
304 |
+
["鲁迅和周树人什么关系?"],
|
305 |
+
["鲁迅和周树人什么关系? 用英文回答。"],
|
306 |
+
["从前有一头牛,这头牛后面有什么?"],
|
307 |
+
["正无穷大加一大于正无穷大吗?"],
|
308 |
+
["正无穷大加正无穷大大于正无穷大吗?"],
|
309 |
+
["-2的平方根等于什么?"],
|
310 |
+
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
|
311 |
+
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
|
312 |
+
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
|
313 |
+
[f"{etext} 翻成中文,列出3个版本。"],
|
314 |
+
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本。"],
|
315 |
+
["假定 1 + 2 = 4, 试求 7 + 8。"],
|
316 |
+
["给出判断一个数是不是质数的 javascript 码。"],
|
317 |
+
["给出实现python 里 range(10)的 javascript 码。"],
|
318 |
+
["给出实现python 里 [*(range(10)]的 javascript 码。"],
|
319 |
+
["Erkläre die Handlung von Cinderella in einem Satz."],
|
320 |
+
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch."],
|
321 |
+
]
|
322 |
+
|
323 |
+
logger.info("start block")
|
324 |
+
|
325 |
+
with gr.Blocks(
|
326 |
+
title=f"{Path(model_loc).name}",
|
327 |
+
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
|
328 |
+
css=css,
|
329 |
+
) as block:
|
330 |
+
# buff_var = gr.State("")
|
331 |
+
with gr.Accordion("🎈 Info", open=False):
|
332 |
+
# gr.HTML(
|
333 |
+
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
|
334 |
+
# )
|
335 |
+
gr.Markdown(
|
336 |
+
f"""<h5><center>{Path(model_loc).name}</center></h4>
|
337 |
+
Most examples are meant for another model.
|
338 |
+
You probably should try to test
|
339 |
+
some related prompts.""",
|
340 |
+
elem_classes="xsmall",
|
341 |
+
)
|
342 |
+
|
343 |
+
# chatbot = gr.Chatbot().style(height=700) # 500
|
344 |
+
chatbot = gr.Chatbot(height=500)
|
345 |
+
|
346 |
+
# buff = gr.Textbox(show_label=False, visible=True)
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column(scale=5):
|
350 |
+
msg = gr.Textbox(
|
351 |
+
label="Chat Message Box",
|
352 |
+
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
|
353 |
+
show_label=False,
|
354 |
+
# container=False,
|
355 |
+
lines=6,
|
356 |
+
max_lines=30,
|
357 |
+
show_copy_button=True,
|
358 |
+
# ).style(container=False)
|
359 |
)
|
360 |
+
with gr.Column(scale=1, min_width=50):
|
361 |
+
with gr.Row():
|
362 |
+
submit = gr.Button("Submit", elem_classes="xsmall")
|
363 |
+
stop = gr.Button("Stop", visible=True)
|
364 |
+
clear = gr.Button("Clear History", visible=True)
|
365 |
+
with gr.Row(visible=False):
|
366 |
+
with gr.Accordion("Advanced Options:", open=False):
|
367 |
+
with gr.Row():
|
368 |
+
with gr.Column(scale=2):
|
369 |
+
system = gr.Textbox(
|
370 |
+
label="System Prompt",
|
371 |
+
value=prompt_template,
|
372 |
+
show_label=False,
|
373 |
+
container=False,
|
374 |
+
# ).style(container=False)
|
375 |
+
)
|
376 |
+
with gr.Column():
|
377 |
+
with gr.Row():
|
378 |
+
change = gr.Button("Change System Prompt")
|
379 |
+
reset = gr.Button("Reset System Prompt")
|
380 |
+
|
381 |
+
with gr.Accordion("Example Inputs", open=True):
|
382 |
+
examples = gr.Examples(
|
383 |
+
examples=examples_list,
|
384 |
+
inputs=[msg],
|
385 |
+
examples_per_page=40,
|
386 |
+
)
|
387 |
+
|
388 |
+
# with gr.Row():
|
389 |
+
with gr.Accordion("Disclaimer", open=False):
|
390 |
+
_ = Path(model_loc).name
|
391 |
+
gr.Markdown(
|
392 |
+
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
|
393 |
+
"factually accurate information. {_} was trained on various public datasets; while great efforts "
|
394 |
+
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
|
395 |
+
"biased, or otherwise offensive outputs.",
|
396 |
+
elem_classes=["disclaimer"],
|
397 |
+
)
|
398 |
+
|
399 |
+
msg_submit_event = msg.submit(
|
400 |
+
# fn=conversation.user_turn,
|
401 |
+
fn=user,
|
402 |
+
inputs=[msg, chatbot],
|
403 |
+
outputs=[msg, chatbot],
|
404 |
+
queue=True,
|
405 |
+
show_progress="full",
|
406 |
+
# api_name=None,
|
407 |
+
).then(bot, chatbot, chatbot, queue=True)
|
408 |
+
submit_click_event = submit.click(
|
409 |
+
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
|
410 |
+
fn=user1, # clear msg
|
411 |
+
inputs=[msg, chatbot],
|
412 |
+
outputs=[msg, chatbot],
|
413 |
+
queue=True,
|
414 |
+
# queue=False,
|
415 |
+
show_progress="full",
|
416 |
+
# api_name=None,
|
417 |
+
).then(bot, chatbot, chatbot, queue=True)
|
418 |
+
stop.click(
|
419 |
+
fn=None,
|
420 |
+
inputs=None,
|
421 |
+
outputs=None,
|
422 |
+
cancels=[msg_submit_event, submit_click_event],
|
423 |
+
queue=False,
|
424 |
+
)
|
425 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
426 |
+
|
427 |
+
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
|
428 |
+
input_text = gr.Text()
|
429 |
+
api_btn = gr.Button("Go", variant="primary")
|
430 |
+
out_text = gr.Text()
|
431 |
+
|
432 |
+
api_btn.click(
|
433 |
+
predict_api,
|
434 |
+
input_text,
|
435 |
+
out_text,
|
436 |
+
api_name="api",
|
437 |
+
)
|
438 |
+
|
439 |
+
# block.load(update_buff, [], buff, every=1)
|
440 |
+
# block.load(update_buff, [buff_var], [buff_var, buff], every=1)
|
441 |
+
|
442 |
+
# concurrency_count=5, max_size=20
|
443 |
+
# max_size=36, concurrency_count=14
|
444 |
+
# CPU cpu_count=2 16G, model 7G
|
445 |
+
# CPU UPGRADE cpu_count=8 32G, model 7G
|
446 |
+
|
447 |
+
# does not work
|
448 |
+
_ = """
|
449 |
+
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
|
450 |
+
# concurrency_count = max(_, 1)
|
451 |
+
if psutil.cpu_count(logical=False) >= 8:
|
452 |
+
# concurrency_count = max(int(32 / file_size) - 1, 1)
|
453 |
+
else:
|
454 |
+
# concurrency_count = max(int(16 / file_size) - 1, 1)
|
455 |
+
# """
|
456 |
+
|
457 |
+
concurrency_count = 1
|
458 |
+
logger.info(f"{concurrency_count=}")
|
459 |
+
|
460 |
+
block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|