import pdfplumber import pandas as pd import gradio as gr # Define function to extract data def extract_data(pdf_file): data = [] columns = ["SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"] start_si, end_si = 10, 1150 with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text = page.extract_text().splitlines() for line in text: parts = line.split() try: si_no = int(parts[0]) if start_si <= si_no <= end_si: material_desc = " ".join(parts[1:3]) unit = parts[3] quantity = int(parts[4]) dely_qty = int(parts[5]) dely_date = parts[6] unit_rate = float(parts[7]) value = float(parts[8]) data.append([si_no, material_desc, unit, quantity, dely_qty, dely_date, unit_rate, value]) except (ValueError, IndexError): continue df = pd.DataFrame(data, columns=columns) excel_path = "/tmp/Extracted_Purchase_Order_Data.xlsx" df.to_excel(excel_path, index=False) return excel_path # Set up Gradio interface iface = gr.Interface( fn=extract_data, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor" ) # Launch the app iface.launch()