import gradio as gr import pdfplumber import pandas as pd import re def extract_data(pdf_file): data = [] purchase_order, order_date = None, None with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text = page.extract_text().splitlines() if not purchase_order or not order_date: for line in text: po_match = re.search(r'Purchase Order\s*:\s*(P\d+)', line) date_match = re.search(r'Order Date\s*:\s*([\d-]+)', line) if po_match: purchase_order = po_match.group(1) if date_match: order_date = date_match.group(1) for line in text: parts = line.split() try: pos = int(parts[0]) if 10 <= pos <= 450: item_code = parts[1] quantity = float(parts[4]) basic_price = float(parts[5]) sub_total = float(parts[-1]) data.append([purchase_order, order_date, pos, item_code, quantity, basic_price, sub_total]) except (ValueError, IndexError): continue df = pd.DataFrame(data, columns=["Purchase Order", "Order Date", "Pos", "Item Code", "Quantity", "Basic Price", "Sub Total"]) excel_path = "/tmp/Extracted_Purchase_Order_Data.xlsx" df.to_excel(excel_path, index=False) return excel_path iface = gr.Interface( fn=extract_data, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor" ) iface.launch()