toshiba_2.O / app.py
neerajkalyank's picture
Update app.py
48f229e verified
raw
history blame
2.45 kB
import pdfplumber
import pandas as pd
from io import BytesIO
import tempfile
import re
import gradio as gr
def extract_data_from_pdf(pdf_file):
data = []
po_number = None
# Save the uploaded file temporarily so pdfplumber can open it
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(pdf_file.read()) # Write the uploaded file content to a temporary file
temp_pdf_path = temp_pdf.name # Get the file path
# Now open the temporary file with pdfplumber
with pdfplumber.open(temp_pdf_path) as pdf:
for page in pdf.pages:
text = page.extract_text()
# Extract PO number once (if not already extracted)
if po_number is None:
po_match = re.search(r"Purchase Order : (\w+)", text)
if po_match:
po_number = po_match.group(1)
# Regex pattern to match the row data
row_pattern = re.compile(
r"(\d+)\s+(\d{10,})\s+(\w+)\s+(\d{4}-\d{2}-\d{2})\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)"
)
# Find all rows matching the pattern
for match in row_pattern.finditer(text):
pos, item_code, unit, delivery_date, quantity, basic_price, amount = match.groups()
sub_total_match = re.search(r"SUB TOTAL : ([\d.]+)", text)
sub_total = sub_total_match.group(1) if sub_total_match else ""
data.append({
"Purchase Order": po_number,
"Pos.": pos,
"Item Code": item_code,
"Unit": unit,
"Delivery Date": delivery_date,
"Quantity": quantity,
"Basic Price": basic_price,
"Amount": amount,
"SUB TOTAL": sub_total
})
# Convert the data to a DataFrame
df = pd.DataFrame(data)
output = BytesIO()
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
df.to_excel(writer, index=False, sheet_name="Extracted Data")
output.seek(0)
return output
# Gradio Interface
iface = gr.Interface(
fn=extract_data_from_pdf,
inputs=gr.File(label="Upload PDF"),
outputs=gr.File(label="Download Excel"),
title="PDF Data Extractor",
description="Extract structured data from a PDF and output it as an Excel file."
)
iface.launch()