toshiba_2.O / app.py
neerajkalyank's picture
Update app.py
7ebbb35 verified
raw
history blame
2.15 kB
import pdfplumber
import pandas as pd
import re
import gradio as gr
def extract_data_from_pdf(pdf_file):
data = []
po_number = None
# Open PDF file directly
with pdfplumber.open(pdf_file.name) as pdf:
for page in pdf.pages:
text = page.extract_text()
# Extract PO number (only once at the start)
if po_number is None:
po_match = re.search(r"Purchase Order : (\w+)", text)
po_number = po_match.group(1) if po_match else "N/A"
# Regex pattern for extracting rows
row_pattern = re.compile(
r"(\d+)\s+(\d{9})\s+(\w+)\s+(\d{4}-\d{2}-\d{2})\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)\s+INR\s+([\d.]+)"
)
# Extract each row using the pattern
for match in row_pattern.finditer(text):
pos, item_code, unit, delivery_date, quantity, basic_price, discount, amount = match.groups()
# Extract subtotal if present
sub_total_match = re.search(r"SUB TOTAL : ([\d.]+)", text)
sub_total = sub_total_match.group(1) if sub_total_match else "0.0"
# Append data for each matched row
data.append({
"Purchase Order": po_number,
"Pos.": pos,
"Item Code": item_code,
"Unit": unit,
"Delivery Date": delivery_date,
"Quantity": quantity,
"Basic Price": basic_price,
"Discount": discount,
"Amount": amount,
"SUB TOTAL": sub_total,
})
# Convert data to DataFrame and save to Excel
df = pd.DataFrame(data)
output_file = "output.xlsx"
df.to_excel(output_file, index=False)
return output_file
# Gradio Interface
iface = gr.Interface(
fn=extract_data_from_pdf,
inputs=gr.File(label="Upload PDF"),
outputs=gr.File(label="Download Excel"),
title="PDF Data Extractor",
description="Extract structured data from a PDF and output it as an Excel file.",
)
iface.launch()