import pdfplumber import pandas as pd import re import gradio as gr def extract_data_from_pdf(pdf_file): data = [] po_number = None # Open PDF file directly with pdfplumber.open(pdf_file.name) as pdf: for page in pdf.pages: text = page.extract_text() # Extract PO number (only once at the start) if po_number is None: po_match = re.search(r"Purchase Order : (\w+)", text) po_number = po_match.group(1) if po_match else "N/A" # Regex pattern for extracting rows row_pattern = re.compile( r"(\d+)\s+(\d{9})\s+(\w+)\s+(\d{4}-\d{2}-\d{2})\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)\s+INR\s+([\d.]+)" ) # Extract each row using the pattern for match in row_pattern.finditer(text): pos, item_code, unit, delivery_date, quantity, basic_price, discount, amount = match.groups() # Extract subtotal if present sub_total_match = re.search(r"SUB TOTAL : ([\d.]+)", text) sub_total = sub_total_match.group(1) if sub_total_match else "0.0" # Append data for each matched row data.append({ "Purchase Order": po_number, "Pos.": pos, "Item Code": item_code, "Unit": unit, "Delivery Date": delivery_date, "Quantity": quantity, "Basic Price": basic_price, "Discount": discount, "Amount": amount, "SUB TOTAL": sub_total, }) # Convert data to DataFrame and save to Excel df = pd.DataFrame(data) output_file = "output.xlsx" df.to_excel(output_file, index=False) return output_file # Gradio Interface iface = gr.Interface( fn=extract_data_from_pdf, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor", description="Extract structured data from a PDF and output it as an Excel file.", ) iface.launch()