Spaces:
Sleeping
Sleeping
nehapasricha94
commited on
Commit
•
8ed452a
1
Parent(s):
028e80e
Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,14 @@ from transformers import pipeline
|
|
7 |
import gradio as gr
|
8 |
from sklearn.cluster import KMeans
|
9 |
from colorsys import rgb_to_hsv
|
|
|
10 |
|
11 |
-
#
|
12 |
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
13 |
|
|
|
|
|
|
|
14 |
# Function to analyze colors in an image
|
15 |
def analyze_colors(image):
|
16 |
try:
|
@@ -117,8 +121,8 @@ def analyze_patterns(image):
|
|
117 |
def compute_overall_result(color_emotions, stress_levels, pattern_analysis, pattern_stress):
|
118 |
try:
|
119 |
# Assigning weightage to different factors
|
120 |
-
color_emotion_weight = 0.5 #
|
121 |
-
pattern_weight = 0.5 #
|
122 |
|
123 |
# Determine the most common emotion from colors
|
124 |
dominant_emotion = max(set(color_emotions), key=color_emotions.count)
|
@@ -153,6 +157,18 @@ def compute_overall_result(color_emotions, stress_levels, pattern_analysis, patt
|
|
153 |
return f"Error computing overall result: {str(e)}"
|
154 |
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
# Main function to process image and analyze emotional expression
|
157 |
def analyze_emotion_from_image(image):
|
158 |
try:
|
|
|
7 |
import gradio as gr
|
8 |
from sklearn.cluster import KMeans
|
9 |
from colorsys import rgb_to_hsv
|
10 |
+
from huggingface_hub import InferenceClient # Import InferenceClient for API calls
|
11 |
|
12 |
+
# Initialize the emotion detection pipeline for text (if any text is included in assets)
|
13 |
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
14 |
|
15 |
+
# Initialize the Hugging Face API client with your Space model ID
|
16 |
+
client = InferenceClient("nehapasricha94/LLaVA-image-analysis")
|
17 |
+
|
18 |
# Function to analyze colors in an image
|
19 |
def analyze_colors(image):
|
20 |
try:
|
|
|
121 |
def compute_overall_result(color_emotions, stress_levels, pattern_analysis, pattern_stress):
|
122 |
try:
|
123 |
# Assigning weightage to different factors
|
124 |
+
color_emotion_weight = 0.5 # 50% for color-based emotions and stress
|
125 |
+
pattern_weight = 0.5 # 50% for pattern analysis
|
126 |
|
127 |
# Determine the most common emotion from colors
|
128 |
dominant_emotion = max(set(color_emotions), key=color_emotions.count)
|
|
|
157 |
return f"Error computing overall result: {str(e)}"
|
158 |
|
159 |
|
160 |
+
# Function to analyze emotions from a given text (if applicable)
|
161 |
+
def analyze_emotion_from_text(text):
|
162 |
+
try:
|
163 |
+
# Using the local emotion classifier
|
164 |
+
emotion_scores = emotion_classifier(text)
|
165 |
+
dominant_emotion = max(emotion_scores, key=lambda x: x['score'])
|
166 |
+
return f"Detected emotion from text: {dominant_emotion['label']} with score: {dominant_emotion['score']:.2f}"
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error analyzing emotion from text: {e}")
|
169 |
+
return "Error analyzing text emotion"
|
170 |
+
|
171 |
+
|
172 |
# Main function to process image and analyze emotional expression
|
173 |
def analyze_emotion_from_image(image):
|
174 |
try:
|