import torch import cv2 from PIL import Image import numpy as np import matplotlib.pyplot as plt from transformers import pipeline import gradio as gr from sklearn.cluster import KMeans # Emotion detection pipeline for text (if any text is included in assets) emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) # Function to analyze colors in an image def analyze_colors(image): try: # Convert image to RGB if not already if image.mode != "RGB": image = image.convert("RGB") # Resize the image for faster processing (small but still sufficient for color analysis) image = image.resize((150, 150)) # Convert to numpy array img_array = np.array(image) # Reshape image to be a list of pixels pixels = img_array.reshape((-1, 3)) # Check if there are enough pixels to perform KMeans if len(pixels) < 5: return "Image has too few pixels for analysis" # Use KMeans to find the dominant colors kmeans = KMeans(n_clusters=5, random_state=0) kmeans.fit(pixels) dominant_colors = kmeans.cluster_centers_ # Plot the colors for visualization plt.figure(figsize=(8, 6)) plt.imshow([dominant_colors.astype(int)]) plt.axis('off') plt.show() return dominant_colors except Exception as e: print(f"Error in analyze_colors: {e}") return None # Function to detect emotions from colors (simplified emotion-color mapping) def color_emotion_analysis(dominant_colors): try: emotions = [] for color in dominant_colors: # Simple logic: darker tones could indicate sadness if np.mean(color) < 85: emotions.append("Sadness") elif np.mean(color) > 170: emotions.append("Happiness") else: emotions.append("Neutral") return emotions except Exception as e: print(f"Error in color_emotion_analysis: {e}") return ["Error analyzing emotions"] # Function to analyze patterns and shapes using OpenCV def analyze_patterns(image): try: # Convert to grayscale for edge detection gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) edges = cv2.Canny(gray_image, 100, 200) # Calculate the number of edges (chaos metric) num_edges = np.sum(edges > 0) if num_edges > 10000: # Arbitrary threshold for "chaos" return "Chaotic patterns - possibly distress" else: return "Orderly patterns - possibly calm" except Exception as e: print(f"Error in analyze_patterns: {e}") return "Error analyzing patterns" # Main function to process image and analyze emotional expression def analyze_emotion_from_image(image): try: # Analyze colors dominant_colors = analyze_colors(image) if dominant_colors is None: return "Error analyzing colors" color_emotions = color_emotion_analysis(dominant_colors) # Analyze patterns pattern_analysis = analyze_patterns(image) return f"Color-based emotions: {color_emotions}\nPattern analysis: {pattern_analysis}" except Exception as e: return f"Error processing image: {str(e)}" # Gradio interface to upload image files and perform analysis iface = gr.Interface(fn=analyze_emotion_from_image, inputs="image", outputs="text") # Launch the interface if __name__ == "__main__": iface.launch()