NeonLLM / shared.py
NeonBohdan's picture
Rename default -> vanilla
0af8d1d
raw
history blame
2.24 kB
import yaml
from typing import Dict
from pydantic import BaseModel, ValidationError
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from openai import OpenAI
class PileConfig(BaseModel):
file2persona: Dict[str, str]
file2prefix: Dict[str, str]
persona2system: Dict[str, str]
prompt: str
class InferenceConfig(BaseModel):
chat_template: str
class RepoConfig(BaseModel):
name: str
tag: str
class ModelConfig(BaseModel):
pile: PileConfig
inference: InferenceConfig
repo: RepoConfig
@classmethod
def from_yaml(cls, yaml_file = "datasets/config.yaml"):
with open(yaml_file, 'r') as file:
data = yaml.safe_load(file)
try:
return cls(**data)
except ValidationError as e:
raise e
class Client:
def __init__(self, api_url, api_key, personas = {}):
self.api_url = api_url
self.api_key = api_key
self.input_personas = personas
self.init_all()
def init_all(self):
self.init_client()
self.get_metadata()
self.get_personas()
def init_client(self):
self.openai = OpenAI(
base_url=f"{self.api_url}/v1",
api_key=self.api_key,
)
def get_metadata(self):
models = self.openai.models.list()
vllm_model_name = models.data[0].id
model_name, *suffix = vllm_model_name.split("@")
revision = dict(enumerate(suffix)).get(0, None)
self.vllm_model_name = vllm_model_name
self.model_name = model_name
self.revision = revision
def get_personas(self):
personas = {}
if self.revision is not None:
try:
config_path = hf_hub_download(self.model_name, "config.yaml",
subfolder="datasets",
revision=self.revision)
self.config = ModelConfig.from_yaml(config_path)
personas = self.config.pile.persona2system
except EntryNotFoundError:
pass
personas["vanilla"] = None
self.personas = self.input_personas | personas