import chromadb import os import gradio as gr import json from huggingface_hub import InferenceClient dbPath='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS' if(os.path.exists(dbPath)==False): dbPath="/home/user/app/chromaTS'" print(dbPath) #path='chromaTS' #settings = Settings(persist_directory=storage_path) #client = chromadb.Client(settings=settings) client = chromadb.PersistentClient(path=path) print(client.heartbeat()) print(client.get_version()) print(client.list_collections()) from chromadb.utils import embedding_functions default_ef = embedding_functions.DefaultEmbeddingFunction() sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")#"VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct") #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") #print(str(client.list_collections())) collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef) client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message): prompt = "" #"" #for user_prompt, bot_response in history: # prompt += f"[INST] {user_prompt} [/INST]" # prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def response( prompt, history,temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) addon="" results=collection.query( query_texts=[prompt], n_results=10, #where={"source": "google-docs"} #where_document={"$contains":"search_string"} ) #print("REsults") #print(results) #print("_____") dists=["
(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] #sources=["source: "+s["source"]+")" for s in results['metadatas'][0]] results=results['documents'][0] combination = zip(results,dists) combination = [' '.join(triplets) for triplets in combination] #print(str(prompt)+"\n\n"+str(combination)) if(len(results)>1): addon=" Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) system="Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt."+addon+"\n\nUser-Anliegen:" formatted_prompt = format_prompt(system+"\n"+prompt,history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output #output=output+"\n\n
Sources
" yield output gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.
Erzähle mir, was du gerne tust!"]],render_markdown=True),title="German BERUFENET-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) print("Interface up and running!")