StockSwingApp / indicators /bollinger_bands.py
netflypsb's picture
Create indicators/bollinger_bands.py
aee56f7 verified
raw
history blame
1.68 kB
# indicators/bollinger_bands.py
import pandas as pd
def calculate_bollinger_bands(data, period=21, std_multiplier=1.7):
"""
Calculates Bollinger Bands for a given period and standard deviation multiplier.
Parameters:
- data: DataFrame containing stock prices with a 'Close' column (DataFrame).
- period: The period over which to calculate the SMA and standard deviation (int).
- std_multiplier: The multiplier for the standard deviation to calculate the upper and lower bands (float).
Returns:
- A DataFrame with columns 'BB_Middle', 'BB_Upper', 'BB_Lower'.
"""
# Calculate the middle band (SMA)
data['BB_Middle'] = data['Close'].rolling(window=period, min_periods=1).mean()
# Calculate the standard deviation
std_dev = data['Close'].rolling(window=period, min_periods=1).std()
# Calculate the upper and lower bands
data['BB_Upper'] = data['BB_Middle'] + (std_multiplier * std_dev)
data['BB_Lower'] = data['BB_Middle'] - (std_multiplier * std_dev)
return data[['BB_Middle', 'BB_Upper', 'BB_Lower']]
# Example usage
if __name__ == "__main__":
# Assuming 'data' is a DataFrame that contains stock price data including a 'Close' column.
# For the sake of example, let's create a dummy DataFrame.
dates = pd.date_range(start="2023-01-01", end="2023-02-28", freq='D')
prices = pd.Series([100 + i * 0.5 for i in range(len(dates))], index=dates)
data = pd.DataFrame(prices, columns=['Close'])
# Calculate Bollinger Bands
bollinger_bands = calculate_bollinger_bands(data)
print(bollinger_bands.head()) # Display the first few rows to verify the calculations