Spaces:
Runtime error
Runtime error
# signals/strategy.py | |
import pandas as pd | |
def generate_buy_signals(data_4h, data_1h): | |
""" | |
Generates buy signals based on specified criteria. | |
Parameters: | |
- data_4h: DataFrame containing 4-hour interval stock data with SMA and price columns. | |
- data_1h: DataFrame containing 1-hour interval stock data with SMA and price columns. | |
Returns: | |
- buy_signals: DataFrame containing timestamps and signals where buy conditions are met. | |
""" | |
# Criteria 1 & 2 for 4-hour data | |
criteria_4h = (data_4h['SMA_21'] > data_4h['SMA_50']) | |
# Criteria 3 & 4 for 1-hour data | |
crossed_above = (data_1h['SMA_21'].shift(2) < data_1h['SMA_50'].shift(2)) & (data_1h['SMA_21'] > data_1h['SMA_50']) | |
was_below = (data_1h['SMA_21'].shift(15) < data_1h['SMA_50'].shift(15)) | |
# Combine criteria | |
buy_signals = data_1h[crossed_above & was_below & criteria_4h.reindex(data_1h.index, method='nearest')] | |
return buy_signals[['SMA_21', 'SMA_50']] | |
def generate_sell_signals(data_4h): | |
""" | |
Generates sell signals based on specified criteria. | |
Parameters: | |
- data_4h: DataFrame containing 4-hour interval stock data with Bollinger Bands and price columns. | |
Returns: | |
- sell_signals: DataFrame containing timestamps and signals where sell conditions are met. | |
""" | |
# Criteria for sell signal | |
crossed_above_bb = data_4h['Close'] > data_4h['BB_Upper'] | |
sell_signals = data_4h[crossed_above_bb] | |
return sell_signals[['Close', 'BB_Upper']] | |
# Example usage would require actual loaded data with the appropriate columns calculated. | |
# This example assumes `data_4h` and `data_1h` DataFrames are prepared and include 'Close', 'SMA_21', 'SMA_50', and Bollinger Bands columns. | |