StockSwingApp / signals /strategy.py
netflypsb's picture
Create signals/strategy.py
4a93688 verified
raw
history blame
1.73 kB
# signals/strategy.py
import pandas as pd
def generate_buy_signals(data_4h, data_1h):
"""
Generates buy signals based on specified criteria.
Parameters:
- data_4h: DataFrame containing 4-hour interval stock data with SMA and price columns.
- data_1h: DataFrame containing 1-hour interval stock data with SMA and price columns.
Returns:
- buy_signals: DataFrame containing timestamps and signals where buy conditions are met.
"""
# Criteria 1 & 2 for 4-hour data
criteria_4h = (data_4h['SMA_21'] > data_4h['SMA_50'])
# Criteria 3 & 4 for 1-hour data
crossed_above = (data_1h['SMA_21'].shift(2) < data_1h['SMA_50'].shift(2)) & (data_1h['SMA_21'] > data_1h['SMA_50'])
was_below = (data_1h['SMA_21'].shift(15) < data_1h['SMA_50'].shift(15))
# Combine criteria
buy_signals = data_1h[crossed_above & was_below & criteria_4h.reindex(data_1h.index, method='nearest')]
return buy_signals[['SMA_21', 'SMA_50']]
def generate_sell_signals(data_4h):
"""
Generates sell signals based on specified criteria.
Parameters:
- data_4h: DataFrame containing 4-hour interval stock data with Bollinger Bands and price columns.
Returns:
- sell_signals: DataFrame containing timestamps and signals where sell conditions are met.
"""
# Criteria for sell signal
crossed_above_bb = data_4h['Close'] > data_4h['BB_Upper']
sell_signals = data_4h[crossed_above_bb]
return sell_signals[['Close', 'BB_Upper']]
# Example usage would require actual loaded data with the appropriate columns calculated.
# This example assumes `data_4h` and `data_1h` DataFrames are prepared and include 'Close', 'SMA_21', 'SMA_50', and Bollinger Bands columns.