# indicators/sma.py import pandas as pd def calculate_sma(data, period): """ Calculates the Simple Moving Average (SMA) for a given period. Parameters: - data: DataFrame containing stock prices with a 'Close' column (DataFrame). - period: The period over which to calculate the SMA (int). Returns: - sma: The calculated SMA as a Series (pd.Series). """ sma = data['Close'].rolling(window=period, min_periods=1).mean() return sma def add_sma_columns(data): """ Adds SMA columns for the 21 and 50 periods to the input DataFrame. Parameters: - data: DataFrame containing stock prices. Must include a 'Close' column (DataFrame). Modifies: - data: The input DataFrame is modified in-place, adding two new columns: 'SMA_21' and 'SMA_50'. """ data['SMA_21'] = calculate_sma(data, 21) data['SMA_50'] = calculate_sma(data, 50) # Example usage if __name__ == "__main__": # Assuming 'data' is a DataFrame that contains stock price data including a 'Close' column. # For the sake of example, let's create a dummy DataFrame. dates = pd.date_range(start="2023-01-01", end="2023-02-28", freq='D') prices = pd.Series([i * 0.01 for i in range(len(dates))], index=dates) data = pd.DataFrame(prices, columns=['Close']) # Add SMA columns add_sma_columns(data) print(data.head()) # Display the first few rows to verify the SMA calculations