import matplotlib.pyplot as plt import matplotlib.dates as mdates def plot_stock_data_with_signals(stock_data): """ Creates a plot of stock data along with SMAs, Bollinger Bands, and buy/sell signals, tailored for display in a Streamlit app. Parameters: - stock_data (pd.DataFrame): The stock data with 'Close', 'SMA_21', 'SMA_50', 'BB_Upper', 'BB_Lower', 'Buy_Signal', and 'Sell_Signal' columns. """ fig, ax = plt.subplots(figsize=(14, 7)) # Plotting the closing prices ax.plot(stock_data.index, stock_data['Close'], label='Close Price', color='blue', alpha=0.5) # Plotting the SMAs ax.plot(stock_data.index, stock_data['SMA_21'], label='21-Period SMA', color='orange', alpha=0.75) ax.plot(stock_data.index, stock_data['SMA_50'], label='50-Period SMA', color='green', alpha=0.75) # Plotting the Bollinger Bands ax.plot(stock_data.index, stock_data['BB_Upper'], label='Upper Bollinger Band', color='red', linestyle='--', alpha=0.5) ax.plot(stock_data.index, stock_data['BB_Lower'], label='Lower Bollinger Band', color='cyan', linestyle='--', alpha=0.5) # Highlighting buy and sell signals buy_signals = stock_data[stock_data['Buy_Signal']] sell_signals = stock_data[stock_data['Sell_Signal']] ax.scatter(buy_signals.index, buy_signals['Close'], label='Buy Signal', marker='^', color='green', alpha=1, s=100) ax.scatter(sell_signals.index, sell_signals['Close'], label='Sell Signal', marker='v', color='red', alpha=1, s=100) # Setting title and labels ax.set_title("Stock Price with Indicators and Signals") ax.set_xlabel("Date") ax.set_ylabel("Price") # Formatting date on the x-axis ax.xaxis.set_major_locator(mdates.WeekdayLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) fig.autofmt_xdate() # Adding legend ax.legend() # Instead of plt.show(), just return the figure object return fig