File size: 10,039 Bytes
996dccf
 
 
 
 
 
 
 
 
 
 
 
3066149
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066149
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066149
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8a87
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
8cc8a87
996dccf
 
8cc8a87
 
 
 
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
3066149
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
 
 
996dccf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from huggingface_hub import ModelCard

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Format


@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    weight_precision: Precision = Precision.Unknown
    activation_precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"  # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = True
    is_merge: bool = False
    flagged: bool = False
    status: str = "FINISHED"
    tags: list = None
    format: Format = Format.Unknown

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        # We manage the legacy config format
        config = data.get("config_general")

        try:
            model_type = ModelType.from_str(config.get("model_type", "Unknown"))
            weight_type = WeightType[config.get("weight_type", "Original")]
            num_params = config.get("params", 0)
            date = os.path.basename(json_filepath).removesuffix(".json").removeprefix("result_")
            architecture = config.get("architectures", "Unknown")
            tags = config.get("model_tag", None)
        except Exception as e:
            self.status = "FAILED"
            print(f"Could not find request file for {self.org}/{self.model}")

        # Precision
        weight_precision = Precision.from_str(config.get("weight_precision"))
        activation_precision = Precision.from_str(config.get("activation_precision"))

        format = Format.from_str(config.get("format"))

        # Get model and org
        org_and_model = config.get("model")
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            try:
                task = task.value
                # We skip old mmlu entries
                # Some truthfulQA values are NaNs
                if task.benchmark == "truthfulqa_mc2" and "truthfulqa_mc2|0" in data["results"]:
                    if math.isnan(float(data["results"]["truthfulqa_mc2|0"][task.metric])):
                        results[task.benchmark] = 0.0
                        continue

                # We average all scores of a given metric (mostly for mmlu)
                if task.benchmark == "mmlu":
                    accs = np.array([data["results"].get(task.benchmark, {}).get(task.metric, None)])
                else:
                    accs = np.array([Tasks.get_metric(task, v) for k, v in data["results"].items() if task.benchmark in k])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue

                mean_acc = np.mean(accs) * 100.0
                results[task.benchmark] = mean_acc
            except Exception as e:
                print(e)
                continue

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            weight_precision=weight_precision,
            activation_precision=activation_precision,
            revision=config.get("model_sha", ""),
            model_type=model_type,
            weight_type=weight_type,
            num_params=num_params,
            date=date,
            architecture=architecture,
            tags=tags,
            format=format,
        )

    # def update_with_request_file(self, requests_path):
    #     """Finds the relevant request file for the current model and updates info with it"""
    #     request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

    # try:
    #     with open(request_file, "r") as f:
    #         request = json.load(f)
    #     self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
    #     self.weight_type = WeightType[request.get("weight_type", "Original")]
    #     self.num_params = request.get("params", 0)
    #     self.date = request.get("submitted_time", "")
    #     self.architecture = request.get("architectures", "Unknown")
    #     self.status = request.get("status", "FAILED")
    # except Exception as e:
    #     self.status = "FAILED"
    #     print(f"Could not find request file for {self.org}/{self.model}")

    # def update_with_dynamic_file_dict(self, file_dict):
    #     self.license = file_dict.get("license", "?")
    #     self.likes = file_dict.get("likes", 0)
    #     self.still_on_hub = file_dict["still_on_hub"]
    #     self.flagged = any("flagged" in tag for tag in file_dict["tags"])
    #     self.tags = file_dict["tags"]

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.weight_precision.name: self.weight_precision.value.name,
            AutoEvalColumn.activation_precision.name: self.activation_precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            # AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
            AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
            AutoEvalColumn.flagged.name: self.flagged,
            AutoEvalColumn.format.name: self.format.value.name,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


# def get_request_file_for_model(requests_path, model_name, precision):
#     """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
#     request_files = os.path.join(
#         requests_path,
#         f"{model_name}_eval_request_*.json",
#     )
#     request_files = glob.glob(request_files)

#     # Select correct request file (precision)
#     request_file = ""
#     request_files = sorted(request_files, reverse=True)
#     for tmp_request_file in request_files:
#         with open(tmp_request_file, "r") as f:
#             req_content = json.load(f)
#             if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
#                 request_file = tmp_request_file
#     return request_file


def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("result_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        print(f"Read {model_result_filepath}")
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            if v.status == "FINISHED":
                v.to_dict()  # we test if the dict version is complete
                results.append(v)
        except KeyError as e:  # not all eval values present
            print(f"Fail to get results from {v.eval_name} with the error {e}")
            print(v)
            continue

    return results