Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
from altair import Column | |
from typing import Union, List, Dict | |
import pandas as pd | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
class Task: | |
benchmark: str | |
metric: Union[str, List[str]] | |
col_name: str | |
class Tasks(Enum): | |
arc = Task("arc_challenge", "acc_norm", "ARC") | |
hellaswag = Task("hellaswag", "acc_norm", "HellaSwag") | |
mmlu = Task("mmlu", "acc", "MMLU") | |
truthfulqa = Task("truthfulqa_mc2", "acc", "TruthfulQA") | |
winogrande = Task("winogrande", "acc", "Winogrande") | |
gsm8k = Task("gsm8k", ["exact_match,get-answer", "exact_match,strict-match"], "GSM8K") | |
def get_metric(task: Task, dict_results: Dict[str, float]): | |
if isinstance(task.metric, str): | |
return dict_results[task.metric] | |
else: | |
for metric in task.metric: | |
if metric in dict_results: | |
return dict_results[metric] | |
return None | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
# Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["weight_precision", ColumnContent, ColumnContent("Weight Precision", "str", False)]) | |
auto_eval_column_dict.append( | |
["activation_precision", ColumnContent, ColumnContent("Activation Precision", "str", False)] | |
) | |
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) | |
auto_eval_column_dict.append( | |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)] | |
) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) | |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) | |
# Dummy column for the search bar (hidden by the custom CSS) | |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
auto_eval_column_dict.append(["format", ColumnContent, ColumnContent("Format", "str", False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
weight_precision = ColumnContent("weight_precision", "str", True) | |
activation_precision = ColumnContent("activation_precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
baseline_row = { | |
AutoEvalColumn.model.name: "<p>Baseline</p>", | |
AutoEvalColumn.revision.name: "N/A", | |
AutoEvalColumn.weight_precision.name: None, | |
AutoEvalColumn.activation_precision.name: None, | |
AutoEvalColumn.merged.name: False, | |
AutoEvalColumn.average.name: 31.0, | |
AutoEvalColumn.arc.name: 25.0, | |
AutoEvalColumn.hellaswag.name: 25.0, | |
AutoEvalColumn.mmlu.name: 25.0, | |
AutoEvalColumn.truthfulqa.name: 25.0, | |
AutoEvalColumn.winogrande.name: 50.0, | |
AutoEvalColumn.gsm8k.name: 0.21, | |
AutoEvalColumn.dummy.name: "baseline", | |
AutoEvalColumn.model_type.name: "", | |
AutoEvalColumn.flagged.name: False, | |
} | |
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below) | |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/) | |
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide) | |
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ) | |
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf) | |
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public | |
# GSM8K: paper | |
# Define the human baselines | |
human_baseline_row = { | |
AutoEvalColumn.model.name: "<p>Human performance</p>", | |
AutoEvalColumn.revision.name: "N/A", | |
AutoEvalColumn.weight_precision.name: None, | |
AutoEvalColumn.activation_precision.name: None, | |
AutoEvalColumn.average.name: 92.75, | |
AutoEvalColumn.merged.name: False, | |
AutoEvalColumn.arc.name: 80.0, | |
AutoEvalColumn.hellaswag.name: 95.0, | |
AutoEvalColumn.mmlu.name: 89.8, | |
AutoEvalColumn.truthfulqa.name: 94.0, | |
AutoEvalColumn.winogrande.name: 94.0, | |
AutoEvalColumn.gsm8k.name: 100, | |
AutoEvalColumn.dummy.name: "human_baseline", | |
AutoEvalColumn.model_type.name: "", | |
AutoEvalColumn.flagged.name: False, | |
} | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="π’") | |
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") | |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") | |
merges = ModelDetails(name="base merges and moerges", symbol="π€") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "πΆ" in type: | |
return ModelType.FT | |
if "pretrained" in type or "π’" in type: | |
return ModelType.PT | |
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): | |
return ModelType.chat | |
if "merge" in type or "π€" in type: | |
return ModelType.merges | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float32 = ModelDetails("float32") | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
int8 = ModelDetails("int8") | |
int4 = ModelDetails("int4") | |
float8 = ModelDetails("float8") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16", "fp16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["int8"]: | |
return Precision.int8 | |
if precision in ["int4"]: | |
return Precision.int4 | |
if precision in ["float8", "fp8"]: | |
return Precision.float8 | |
if precision in ["torch.float32", "float32"]: | |
return Precision.float32 | |
return Precision.Unknown | |
class Format(Enum): | |
FakeQuant = ModelDetails("FAKE_QUANT") | |
Unknown = ModelDetails("None") | |
def from_str(format): | |
if format in ["FAKE_QUANT"]: | |
return Format.FakeQuant | |
return Format.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |