import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from huggingface_hub import ModelCard

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType


@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    weight_precision: Precision = Precision.Unknown
    activation_precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"  # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = True
    is_merge: bool = False
    flagged: bool = False
    status: str = "FINISHED"
    tags: list = None

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        # We manage the legacy config format
        config = data.get("config_general")

        try:
            model_type = ModelType.from_str(config.get("model_type", "Unknown"))
            weight_type = WeightType[config.get("weight_type", "Original")]
            num_params = config.get("params", 0)
            date = os.path.basename(json_filepath).removesuffix(".json").removeprefix("result_")
            architecture = config.get("architectures", "Unknown")
            tags = config.get("model_tag", None)
        except Exception as e:
            self.status = "FAILED"
            print(f"Could not find request file for {self.org}/{self.model}")

        # Precision
        weight_precision = Precision.from_str(config.get("weight_precision"))
        activation_precision = Precision.from_str(config.get("activation_precision"))

        # Get model and org
        org_and_model = config.get("model")
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value
            # We skip old mmlu entries
            # Some truthfulQA values are NaNs
            if task.benchmark == "truthfulqa_mc2" and "truthfulqa_mc2|0" in data["results"]:
                if math.isnan(float(data["results"]["truthfulqa_mc2|0"][task.metric])):
                    results[task.benchmark] = 0.0
                    continue

            # We average all scores of a given metric (mostly for mmlu)
            if task.benchmark == "mmlu":
                accs = np.array([data["results"].get(task.benchmark).get(task.metric, None)])
            else:
                accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            weight_precision=weight_precision,
            activation_precision=activation_precision,
            revision=config.get("model_sha", ""),
            model_type=model_type,
            weight_type=weight_type,
            num_params=num_params,
            date=date,
            architecture=architecture,
            tags=tags,
        )

    # def update_with_request_file(self, requests_path):
    #     """Finds the relevant request file for the current model and updates info with it"""
    #     request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

    # try:
    #     with open(request_file, "r") as f:
    #         request = json.load(f)
    #     self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
    #     self.weight_type = WeightType[request.get("weight_type", "Original")]
    #     self.num_params = request.get("params", 0)
    #     self.date = request.get("submitted_time", "")
    #     self.architecture = request.get("architectures", "Unknown")
    #     self.status = request.get("status", "FAILED")
    # except Exception as e:
    #     self.status = "FAILED"
    #     print(f"Could not find request file for {self.org}/{self.model}")

    # def update_with_dynamic_file_dict(self, file_dict):
    #     self.license = file_dict.get("license", "?")
    #     self.likes = file_dict.get("likes", 0)
    #     self.still_on_hub = file_dict["still_on_hub"]
    #     self.flagged = any("flagged" in tag for tag in file_dict["tags"])
    #     self.tags = file_dict["tags"]

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.weight_precision.name: self.weight_precision.value.name,
            AutoEvalColumn.activation_precision.name: self.activation_precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
            AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
            AutoEvalColumn.flagged.name: self.flagged,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


# def get_request_file_for_model(requests_path, model_name, precision):
#     """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
#     request_files = os.path.join(
#         requests_path,
#         f"{model_name}_eval_request_*.json",
#     )
#     request_files = glob.glob(request_files)

#     # Select correct request file (precision)
#     request_file = ""
#     request_files = sorted(request_files, reverse=True)
#     for tmp_request_file in request_files:
#         with open(tmp_request_file, "r") as f:
#             req_content = json.load(f)
#             if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
#                 request_file = tmp_request_file
#     return request_file


def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("result_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            if v.status == "FINISHED":
                v.to_dict()  # we test if the dict version is complete
                results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results