Spaces:
Runtime error
Runtime error
File size: 15,516 Bytes
c34ed4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .warplayer import warp_features
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DecoderBlock(nn.Module):
def __init__(self, in_planes, c=224, out_msgs=0, out_locals=0, block_nums=1, out_masks=1, out_local_flows=32, out_msgs_flows=32, out_feat_flows=0):
super(DecoderBlock, self).__init__()
self.conv0 = nn.Sequential(
nn.Conv2d(in_planes, c, 3, 2, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 2, 1),
nn.PReLU(c),
)
self.convblocks = nn.ModuleList()
for i in range(block_nums):
self.convblocks.append(nn.Sequential(
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
nn.Conv2d(c, c, 3, 1, 1),
nn.PReLU(c),
))
self.out_flows = 2
self.out_msgs = out_msgs
self.out_msgs_flows = out_msgs_flows if out_msgs > 0 else 0
self.out_locals = out_locals
self.out_local_flows = out_local_flows if out_locals > 0 else 0
self.out_masks = out_masks
self.out_feat_flows = out_feat_flows
self.conv_last = nn.Sequential(
nn.ConvTranspose2d(c, c, 4, 2, 1),
nn.PReLU(c),
nn.ConvTranspose2d(c, self.out_flows+self.out_msgs+self.out_msgs_flows +
self.out_locals+self.out_local_flows+self.out_masks+self.out_feat_flows, 4, 2, 1),
)
def forward(self, accumulated_flow, *other):
x = [accumulated_flow]
for each in other:
if each is not None:
assert(accumulated_flow.shape[-1] == each.shape[-1]), "decoder want {}, but get {}".format(
accumulated_flow.shape, each.shape)
x.append(each)
feat = self.conv0(torch.cat(x, dim=1))
for convblock1 in self.convblocks:
feat = convblock1(feat) + feat
feat = self.conv_last(feat)
prev = 0
flow = feat[:, prev:prev+self.out_flows, :, :]
prev += self.out_flows
message = feat[:, prev:prev+self.out_msgs,
:, :] if self.out_msgs > 0 else None
prev += self.out_msgs
message_flow = feat[:, prev:prev + self.out_msgs_flows,
:, :] if self.out_msgs_flows > 0 else None
prev += self.out_msgs_flows
local_message = feat[:, prev:prev + self.out_locals,
:, :] if self.out_locals > 0 else None
prev += self.out_locals
local_message_flow = feat[:, prev:prev+self.out_local_flows,
:, :] if self.out_local_flows > 0 else None
prev += self.out_local_flows
mask = torch.sigmoid(
feat[:, prev:prev+self.out_masks, :, :]) if self.out_masks > 0 else None
prev += self.out_masks
feat_flow = feat[:, prev:prev+self.out_feat_flows,
:, :] if self.out_feat_flows > 0 else None
prev += self.out_feat_flows
return flow, mask, message, message_flow, local_message, local_message_flow, feat_flow
class CINN(nn.Module):
def __init__(self, DIM_SHADER_REFERENCE, target_feature_chns=[512, 256, 128, 64, 64], feature_chns=[2048, 1024, 512, 256, 64], out_msgs_chn=[2048, 1024, 512, 256, 64, 64], out_locals_chn=[2048, 1024, 512, 256, 64, 0], block_num=[1, 1, 1, 1, 1, 2], block_chn_num=[224, 224, 224, 224, 224, 224]):
super(CINN, self).__init__()
self.in_msgs_chn = [0, *out_msgs_chn[:-1]]
self.in_locals_chn = [0, *out_locals_chn[:-1]]
self.decoder_blocks = nn.ModuleList()
self.feed_weighted = True
if self.feed_weighted:
in_planes = 2+2+DIM_SHADER_REFERENCE*2
else:
in_planes = 2+DIM_SHADER_REFERENCE
for each_target_feature_chns, each_feature_chns, each_out_msgs_chn, each_out_locals_chn, each_in_msgs_chn, each_in_locals_chn, each_block_num, each_block_chn_num in zip(target_feature_chns, feature_chns, out_msgs_chn, out_locals_chn, self.in_msgs_chn, self.in_locals_chn, block_num, block_chn_num):
self.decoder_blocks.append(
DecoderBlock(in_planes+each_target_feature_chns+each_feature_chns+each_in_locals_chn+each_in_msgs_chn, c=each_block_chn_num, block_nums=each_block_num, out_msgs=each_out_msgs_chn, out_locals=each_out_locals_chn, out_masks=2+each_out_locals_chn))
for i in range(len(feature_chns), len(out_locals_chn)):
#print("append extra block", i, "msg",
# out_msgs_chn[i], "local", out_locals_chn[i], "block", block_num[i])
self.decoder_blocks.append(
DecoderBlock(in_planes+self.in_msgs_chn[i]+self.in_locals_chn[i], c=block_chn_num[i], block_nums=block_num[i], out_msgs=out_msgs_chn[i], out_locals=out_locals_chn[i], out_masks=2+out_msgs_chn[i], out_feat_flows=0))
def apply_flow(self, mask, message, message_flow, local_message, local_message_flow, x_reference, accumulated_flow, each_x_reference_features=None, each_x_reference_features_flow=None):
if each_x_reference_features is not None:
size_from = each_x_reference_features
else:
size_from = x_reference
f_size = (size_from.shape[2], size_from.shape[3])
accumulated_flow = self.flow_rescale(
accumulated_flow, size_from)
# mask = warp_features(F.interpolate(
# mask, size=f_size, mode="bilinear"), accumulated_flow) if mask is not None else None
mask = F.interpolate(
mask, size=f_size, mode="bilinear") if mask is not None else None
message = F.interpolate(
message, size=f_size, mode="bilinear") if message is not None else None
message_flow = self.flow_rescale(
message_flow, size_from) if message_flow is not None else None
message = warp_features(
message, message_flow) if message_flow is not None else message
local_message = F.interpolate(
local_message, size=f_size, mode="bilinear") if local_message is not None else None
local_message_flow = self.flow_rescale(
local_message_flow, size_from) if local_message_flow is not None else None
local_message = warp_features(
local_message, local_message_flow) if local_message_flow is not None else local_message
warp_x_reference = warp_features(F.interpolate(
x_reference, size=f_size, mode="bilinear"), accumulated_flow)
each_x_reference_features_flow = self.flow_rescale(
each_x_reference_features_flow, size_from) if (each_x_reference_features is not None and each_x_reference_features_flow is not None) else None
warp_each_x_reference_features = warp_features(
each_x_reference_features, each_x_reference_features_flow) if each_x_reference_features_flow is not None else each_x_reference_features
return mask, message, local_message, warp_x_reference, accumulated_flow, warp_each_x_reference_features, each_x_reference_features_flow
def forward(self, x_target_features=[], x_reference=None, x_reference_features=[]):
y_flow = []
y_feat_flow = []
y_local_message = []
y_warp_x_reference = []
y_warp_x_reference_features = []
y_weighted_flow = []
y_weighted_mask = []
y_weighted_message = []
y_weighted_x_reference = []
y_weighted_x_reference_features = []
for pyrlevel, ifblock in enumerate(self.decoder_blocks):
stacked_wref = []
stacked_feat = []
stacked_anci = []
stacked_flow = []
stacked_mask = []
stacked_mesg = []
stacked_locm = []
stacked_feat_flow = []
for view_id in range(x_reference.shape[1]): # NMCHW
if pyrlevel == 0:
# create from zero flow
feat_ev = x_reference_features[pyrlevel][:,
view_id, :, :, :] if pyrlevel < len(x_reference_features) else None
accumulated_flow = torch.zeros_like(
feat_ev[:, :2, :, :]).to(device)
accumulated_feat_flow = torch.zeros_like(
feat_ev[:, :32, :, :]).to(device)
# domestic inputs
warp_x_reference = F.interpolate(x_reference[:, view_id, :, :, :], size=(
feat_ev.shape[-2], feat_ev.shape[-1]), mode="bilinear")
warp_x_reference_features = feat_ev
local_message = None
# federated inputs
weighted_flow = accumulated_flow if self.feed_weighted else None
weighted_wref = warp_x_reference if self.feed_weighted else None
weighted_message = None
else:
# resume from last layer
accumulated_flow = y_flow[-1][:, view_id, :, :, :]
accumulated_feat_flow = y_feat_flow[-1][:,
view_id, :, :, :] if y_feat_flow[-1] is not None else None
# domestic inputs
warp_x_reference = y_warp_x_reference[-1][:,
view_id, :, :, :]
warp_x_reference_features = y_warp_x_reference_features[-1][:,
view_id, :, :, :] if y_warp_x_reference_features[-1] is not None else None
local_message = y_local_message[-1][:, view_id, :,
:, :] if len(y_local_message) > 0 else None
# federated inputs
weighted_flow = y_weighted_flow[-1] if self.feed_weighted else None
weighted_wref = y_weighted_x_reference[-1] if self.feed_weighted else None
weighted_message = y_weighted_message[-1] if len(
y_weighted_message) > 0 else None
scaled_x_target = x_target_features[pyrlevel][:, :, :, :].detach() if pyrlevel < len(
x_target_features) else None
# compute flow
residual_flow, mask, message, message_flow, local_message, local_message_flow, residual_feat_flow = ifblock(
accumulated_flow, scaled_x_target, warp_x_reference, warp_x_reference_features, weighted_flow, weighted_wref, weighted_message, local_message)
accumulated_flow = residual_flow + accumulated_flow
accumulated_feat_flow = accumulated_flow
feat_ev = x_reference_features[pyrlevel+1][:,
view_id, :, :, :] if pyrlevel+1 < len(x_reference_features) else None
mask, message, local_message, warp_x_reference, accumulated_flow, warp_x_reference_features, accumulated_feat_flow = self.apply_flow(
mask, message, message_flow, local_message, local_message_flow, x_reference[:, view_id, :, :, :], accumulated_flow, feat_ev, accumulated_feat_flow)
stacked_flow.append(accumulated_flow)
if accumulated_feat_flow is not None:
stacked_feat_flow.append(accumulated_feat_flow)
stacked_mask.append(mask)
if message is not None:
stacked_mesg.append(message)
if local_message is not None:
stacked_locm.append(local_message)
stacked_wref.append(warp_x_reference)
if warp_x_reference_features is not None:
stacked_feat.append(warp_x_reference_features)
stacked_flow = torch.stack(stacked_flow, dim=1) # M*NCHW -> NMCHW
stacked_feat_flow = torch.stack(stacked_feat_flow, dim=1) if len(
stacked_feat_flow) > 0 else None
stacked_mask = torch.stack(
stacked_mask, dim=1)
stacked_mesg = torch.stack(stacked_mesg, dim=1) if len(
stacked_mesg) > 0 else None
stacked_locm = torch.stack(stacked_locm, dim=1) if len(
stacked_locm) > 0 else None
stacked_wref = torch.stack(stacked_wref, dim=1)
stacked_feat = torch.stack(stacked_feat, dim=1) if len(
stacked_feat) > 0 else None
stacked_anci = torch.stack(stacked_anci, dim=1) if len(
stacked_anci) > 0 else None
y_flow.append(stacked_flow)
y_feat_flow.append(stacked_feat_flow)
y_warp_x_reference.append(stacked_wref)
y_warp_x_reference_features.append(stacked_feat)
# compute normalized confidence
stacked_contrib = torch.nn.functional.softmax(stacked_mask, dim=1)
# torch.sum to remove temp dimension M from NMCHW --> NCHW
weighted_flow = torch.sum(
stacked_mask[:, :, 0:1, :, :] * stacked_contrib[:, :, 0:1, :, :] * stacked_flow, dim=1)
weighted_mask = torch.sum(
stacked_contrib[:, :, 0:1, :, :] * stacked_mask[:, :, 0:1, :, :], dim=1)
weighted_wref = torch.sum(
stacked_mask[:, :, 0:1, :, :] * stacked_contrib[:, :, 0:1, :, :] * stacked_wref, dim=1) if stacked_wref is not None else None
weighted_feat = torch.sum(
stacked_mask[:, :, 1:2, :, :] * stacked_contrib[:, :, 1:2, :, :] * stacked_feat, dim=1) if stacked_feat is not None else None
weighted_mesg = torch.sum(
stacked_mask[:, :, 2:, :, :] * stacked_contrib[:, :, 2:, :, :] * stacked_mesg, dim=1) if stacked_mesg is not None else None
y_weighted_flow.append(weighted_flow)
y_weighted_mask.append(weighted_mask)
if weighted_mesg is not None:
y_weighted_message.append(weighted_mesg)
if stacked_locm is not None:
y_local_message.append(stacked_locm)
y_weighted_message.append(weighted_mesg)
y_weighted_x_reference.append(weighted_wref)
y_weighted_x_reference_features.append(weighted_feat)
if weighted_feat is not None:
y_weighted_x_reference_features.append(weighted_feat)
return {
"y_last_remote_features": [weighted_mesg],
}
def flow_rescale(self, prev_flow, each_x_reference_features):
if prev_flow is None:
prev_flow = torch.zeros_like(
each_x_reference_features[:, :2]).to(device)
else:
up_scale_factor = each_x_reference_features.shape[-1] / \
prev_flow.shape[-1]
if up_scale_factor != 1:
prev_flow = F.interpolate(prev_flow, scale_factor=up_scale_factor, mode="bilinear",
align_corners=False, recompute_scale_factor=False) * up_scale_factor
return prev_flow
|