File size: 15,516 Bytes
c34ed4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import torch.nn as nn
import torch.nn.functional as F
from .warplayer import warp_features
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class DecoderBlock(nn.Module):
    def __init__(self, in_planes, c=224, out_msgs=0, out_locals=0, block_nums=1, out_masks=1, out_local_flows=32, out_msgs_flows=32, out_feat_flows=0):

        super(DecoderBlock, self).__init__()
        self.conv0 = nn.Sequential(
            nn.Conv2d(in_planes, c, 3, 2, 1),
            nn.PReLU(c),
            nn.Conv2d(c, c, 3, 2, 1),
            nn.PReLU(c),
        )

        self.convblocks = nn.ModuleList()
        for i in range(block_nums):
            self.convblocks.append(nn.Sequential(
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
                nn.Conv2d(c, c, 3, 1, 1),
                nn.PReLU(c),
            ))
        self.out_flows = 2
        self.out_msgs = out_msgs
        self.out_msgs_flows = out_msgs_flows if out_msgs > 0 else 0
        self.out_locals = out_locals
        self.out_local_flows = out_local_flows if out_locals > 0 else 0
        self.out_masks = out_masks
        self.out_feat_flows = out_feat_flows

        self.conv_last = nn.Sequential(
            nn.ConvTranspose2d(c, c, 4, 2, 1),
            nn.PReLU(c),
            nn.ConvTranspose2d(c, self.out_flows+self.out_msgs+self.out_msgs_flows +
                               self.out_locals+self.out_local_flows+self.out_masks+self.out_feat_flows, 4, 2, 1),
        )

    def forward(self, accumulated_flow, *other):
        x = [accumulated_flow]
        for each in other:
            if each is not None:
                assert(accumulated_flow.shape[-1] == each.shape[-1]), "decoder want {}, but get {}".format(
                    accumulated_flow.shape, each.shape)
                x.append(each)
        feat = self.conv0(torch.cat(x, dim=1))
        for convblock1 in self.convblocks:
            feat = convblock1(feat) + feat
        feat = self.conv_last(feat)
        prev = 0
        flow = feat[:, prev:prev+self.out_flows, :, :]
        prev += self.out_flows
        message = feat[:, prev:prev+self.out_msgs,
                       :, :] if self.out_msgs > 0 else None
        prev += self.out_msgs
        message_flow = feat[:, prev:prev + self.out_msgs_flows,
                            :, :] if self.out_msgs_flows > 0 else None
        prev += self.out_msgs_flows
        local_message = feat[:, prev:prev + self.out_locals,
                             :, :] if self.out_locals > 0 else None
        prev += self.out_locals
        local_message_flow = feat[:, prev:prev+self.out_local_flows,
                                  :, :] if self.out_local_flows > 0 else None
        prev += self.out_local_flows
        mask = torch.sigmoid(
            feat[:, prev:prev+self.out_masks, :, :]) if self.out_masks > 0 else None
        prev += self.out_masks
        feat_flow = feat[:, prev:prev+self.out_feat_flows,
                         :, :] if self.out_feat_flows > 0 else None
        prev += self.out_feat_flows
        return flow, mask, message, message_flow, local_message, local_message_flow, feat_flow


class CINN(nn.Module):
    def __init__(self, DIM_SHADER_REFERENCE, target_feature_chns=[512, 256, 128, 64, 64], feature_chns=[2048, 1024, 512, 256, 64], out_msgs_chn=[2048, 1024, 512, 256, 64, 64], out_locals_chn=[2048, 1024, 512, 256, 64, 0], block_num=[1, 1, 1, 1, 1, 2], block_chn_num=[224, 224, 224, 224, 224, 224]):
        super(CINN, self).__init__()
       
        self.in_msgs_chn = [0, *out_msgs_chn[:-1]]
        self.in_locals_chn = [0, *out_locals_chn[:-1]]

        self.decoder_blocks = nn.ModuleList()
        self.feed_weighted = True
        if self.feed_weighted:
            in_planes = 2+2+DIM_SHADER_REFERENCE*2
        else:
            in_planes = 2+DIM_SHADER_REFERENCE
        for each_target_feature_chns, each_feature_chns, each_out_msgs_chn, each_out_locals_chn, each_in_msgs_chn, each_in_locals_chn, each_block_num, each_block_chn_num in zip(target_feature_chns, feature_chns, out_msgs_chn, out_locals_chn, self.in_msgs_chn, self.in_locals_chn, block_num, block_chn_num):
            self.decoder_blocks.append(
                DecoderBlock(in_planes+each_target_feature_chns+each_feature_chns+each_in_locals_chn+each_in_msgs_chn, c=each_block_chn_num, block_nums=each_block_num, out_msgs=each_out_msgs_chn, out_locals=each_out_locals_chn, out_masks=2+each_out_locals_chn))
        for i in range(len(feature_chns), len(out_locals_chn)):
            #print("append extra block", i, "msg",
            #      out_msgs_chn[i], "local", out_locals_chn[i], "block", block_num[i])
            self.decoder_blocks.append(
                DecoderBlock(in_planes+self.in_msgs_chn[i]+self.in_locals_chn[i], c=block_chn_num[i], block_nums=block_num[i], out_msgs=out_msgs_chn[i], out_locals=out_locals_chn[i], out_masks=2+out_msgs_chn[i], out_feat_flows=0))

    def apply_flow(self, mask, message, message_flow, local_message, local_message_flow, x_reference, accumulated_flow, each_x_reference_features=None, each_x_reference_features_flow=None):
        if each_x_reference_features is not None:
            size_from = each_x_reference_features
        else:
            size_from = x_reference
        f_size = (size_from.shape[2], size_from.shape[3])
        accumulated_flow = self.flow_rescale(
            accumulated_flow, size_from)
        # mask = warp_features(F.interpolate(
        #    mask, size=f_size, mode="bilinear"), accumulated_flow) if mask is not None else None
        mask = F.interpolate(
            mask, size=f_size, mode="bilinear") if mask is not None else None
        message = F.interpolate(
            message, size=f_size, mode="bilinear") if message is not None else None
        message_flow = self.flow_rescale(
            message_flow, size_from) if message_flow is not None else None
        message = warp_features(
            message, message_flow) if message_flow is not None else message

        local_message = F.interpolate(
            local_message, size=f_size, mode="bilinear") if local_message is not None else None
        local_message_flow = self.flow_rescale(
            local_message_flow, size_from) if local_message_flow is not None else None
        local_message = warp_features(
            local_message, local_message_flow) if local_message_flow is not None else local_message

        warp_x_reference = warp_features(F.interpolate(
            x_reference, size=f_size, mode="bilinear"), accumulated_flow)

        each_x_reference_features_flow = self.flow_rescale(
            each_x_reference_features_flow, size_from) if (each_x_reference_features is not None and each_x_reference_features_flow is not None) else None
        warp_each_x_reference_features = warp_features(
            each_x_reference_features, each_x_reference_features_flow) if each_x_reference_features_flow is not None else each_x_reference_features

        return mask, message, local_message, warp_x_reference, accumulated_flow, warp_each_x_reference_features, each_x_reference_features_flow

    def forward(self, x_target_features=[], x_reference=None, x_reference_features=[]):
        y_flow = []
        y_feat_flow = []

        y_local_message = []
        y_warp_x_reference = []
        y_warp_x_reference_features = []

        y_weighted_flow = []
        y_weighted_mask = []
        y_weighted_message = []
        y_weighted_x_reference = []
        y_weighted_x_reference_features = []

        for pyrlevel, ifblock in enumerate(self.decoder_blocks):
            stacked_wref = []
            stacked_feat = []
            stacked_anci = []
            stacked_flow = []
            stacked_mask = []
            stacked_mesg = []
            stacked_locm = []
            stacked_feat_flow = []
            for view_id in range(x_reference.shape[1]):  # NMCHW

                if pyrlevel == 0:
                    # create from zero flow
                    feat_ev = x_reference_features[pyrlevel][:,
                                                             view_id, :, :, :] if pyrlevel < len(x_reference_features) else None

                    accumulated_flow = torch.zeros_like(
                        feat_ev[:, :2, :, :]).to(device)
                    accumulated_feat_flow = torch.zeros_like(
                        feat_ev[:, :32, :, :]).to(device)
                    # domestic inputs
                    warp_x_reference = F.interpolate(x_reference[:, view_id, :, :, :], size=(
                        feat_ev.shape[-2], feat_ev.shape[-1]), mode="bilinear")
                    warp_x_reference_features = feat_ev

                    local_message = None
                    # federated inputs
                    weighted_flow = accumulated_flow if self.feed_weighted else None
                    weighted_wref = warp_x_reference if self.feed_weighted else None
                    weighted_message = None
                else:
                    # resume from last layer
                    accumulated_flow = y_flow[-1][:, view_id, :, :, :]
                    accumulated_feat_flow = y_feat_flow[-1][:,
                                                            view_id, :, :, :] if y_feat_flow[-1] is not None else None
                    # domestic inputs
                    warp_x_reference = y_warp_x_reference[-1][:,
                                                              view_id, :, :, :]
                    warp_x_reference_features = y_warp_x_reference_features[-1][:,
                                                                                view_id, :, :, :] if y_warp_x_reference_features[-1] is not None else None
                    local_message = y_local_message[-1][:, view_id, :,
                                                        :, :] if len(y_local_message) > 0 else None

                    # federated inputs
                    weighted_flow = y_weighted_flow[-1] if self.feed_weighted else None
                    weighted_wref = y_weighted_x_reference[-1] if self.feed_weighted else None
                    weighted_message = y_weighted_message[-1] if len(
                        y_weighted_message) > 0 else None
                scaled_x_target = x_target_features[pyrlevel][:, :, :, :].detach() if pyrlevel < len(
                    x_target_features) else None
                # compute flow
                residual_flow, mask, message, message_flow, local_message, local_message_flow, residual_feat_flow = ifblock(
                    accumulated_flow, scaled_x_target, warp_x_reference, warp_x_reference_features, weighted_flow, weighted_wref, weighted_message, local_message)
                accumulated_flow = residual_flow + accumulated_flow
                accumulated_feat_flow = accumulated_flow

                feat_ev = x_reference_features[pyrlevel+1][:,
                                                           view_id, :, :, :] if pyrlevel+1 < len(x_reference_features) else None
                mask, message, local_message, warp_x_reference, accumulated_flow,  warp_x_reference_features, accumulated_feat_flow = self.apply_flow(
                    mask, message, message_flow, local_message, local_message_flow, x_reference[:, view_id, :, :, :], accumulated_flow, feat_ev, accumulated_feat_flow)
                stacked_flow.append(accumulated_flow)
                if accumulated_feat_flow is not None:
                    stacked_feat_flow.append(accumulated_feat_flow)
                stacked_mask.append(mask)
                if message is not None:
                    stacked_mesg.append(message)
                if local_message is not None:
                    stacked_locm.append(local_message)
                stacked_wref.append(warp_x_reference)
                if warp_x_reference_features is not None:
                    stacked_feat.append(warp_x_reference_features)

            stacked_flow = torch.stack(stacked_flow, dim=1)  # M*NCHW -> NMCHW
            stacked_feat_flow = torch.stack(stacked_feat_flow, dim=1) if len(
                stacked_feat_flow) > 0 else None
            stacked_mask = torch.stack(
                stacked_mask, dim=1)
            
            stacked_mesg = torch.stack(stacked_mesg, dim=1) if len(
                stacked_mesg) > 0 else None
            stacked_locm = torch.stack(stacked_locm, dim=1) if len(
                stacked_locm) > 0 else None

            stacked_wref = torch.stack(stacked_wref, dim=1)
            stacked_feat = torch.stack(stacked_feat, dim=1) if len(
                stacked_feat) > 0 else None
            stacked_anci = torch.stack(stacked_anci, dim=1) if len(
                stacked_anci) > 0 else None
            y_flow.append(stacked_flow)
            y_feat_flow.append(stacked_feat_flow)

            y_warp_x_reference.append(stacked_wref)
            y_warp_x_reference_features.append(stacked_feat)
            # compute normalized confidence
            stacked_contrib = torch.nn.functional.softmax(stacked_mask, dim=1)

            # torch.sum to remove temp dimension M from NMCHW --> NCHW
            weighted_flow = torch.sum(
                stacked_mask[:, :, 0:1, :, :] * stacked_contrib[:, :, 0:1, :, :] * stacked_flow, dim=1)
            weighted_mask = torch.sum(
                stacked_contrib[:, :, 0:1, :, :] * stacked_mask[:, :, 0:1, :, :], dim=1)
            weighted_wref = torch.sum(
                stacked_mask[:, :, 0:1, :, :] * stacked_contrib[:, :, 0:1, :, :] * stacked_wref, dim=1) if stacked_wref is not None else None
            weighted_feat = torch.sum(
                stacked_mask[:, :, 1:2, :, :] * stacked_contrib[:, :, 1:2, :, :] * stacked_feat, dim=1) if stacked_feat is not None else None
            weighted_mesg = torch.sum(
                stacked_mask[:, :, 2:, :, :] * stacked_contrib[:, :, 2:, :, :] * stacked_mesg, dim=1) if stacked_mesg is not None else None
            y_weighted_flow.append(weighted_flow)
            y_weighted_mask.append(weighted_mask)
            if weighted_mesg is not None:
                y_weighted_message.append(weighted_mesg)
            if stacked_locm is not None:
                y_local_message.append(stacked_locm)
            y_weighted_message.append(weighted_mesg)
            y_weighted_x_reference.append(weighted_wref)
            y_weighted_x_reference_features.append(weighted_feat)

            if weighted_feat is not None:
                y_weighted_x_reference_features.append(weighted_feat)
        return {
            "y_last_remote_features": [weighted_mesg],
        }

    def flow_rescale(self, prev_flow, each_x_reference_features):
        if prev_flow is None:
            prev_flow = torch.zeros_like(
                each_x_reference_features[:, :2]).to(device)
        else:
            up_scale_factor = each_x_reference_features.shape[-1] / \
                prev_flow.shape[-1]
            if up_scale_factor != 1:
                prev_flow = F.interpolate(prev_flow, scale_factor=up_scale_factor, mode="bilinear",
                                          align_corners=False, recompute_scale_factor=False) * up_scale_factor
        return prev_flow