Spaces:
Runtime error
Runtime error
File size: 11,822 Bytes
c34ed4d fa86813 c34ed4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import torch
from model.backbone import ResEncUnet
from model.shader import CINN
from model.decoder_small import RGBADecoderNet
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def UDPClip(x):
return torch.clamp(x, min=0, max=1) # NCHW
class CoNR():
def __init__(self, args):
self.args = args
self.udpparsernet = ResEncUnet(
backbone_name='resnet50_danbo',
classes=4,
pretrained=(args.local_rank == 0),
parametric_upsampling=True,
decoder_filters=(512, 384, 256, 128, 32),
map_location=device
)
self.target_pose_encoder = ResEncUnet(
backbone_name='resnet18_danbo-4',
classes=1,
pretrained=(args.local_rank == 0),
parametric_upsampling=True,
decoder_filters=(512, 384, 256, 128, 32),
map_location=device
)
self.DIM_SHADER_REFERENCE = 4
self.shader = CINN(self.DIM_SHADER_REFERENCE)
self.rgbadecodernet = RGBADecoderNet(
)
self.device()
self.parser_ckpt = None
def dist(self):
args = self.args
if args.distributed:
self.udpparsernet = torch.nn.parallel.DistributedDataParallel(
self.udpparsernet,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
self.target_pose_encoder = torch.nn.parallel.DistributedDataParallel(
self.target_pose_encoder,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
self.shader = torch.nn.parallel.DistributedDataParallel(
self.shader,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=True
)
self.rgbadecodernet = torch.nn.parallel.DistributedDataParallel(
self.rgbadecodernet,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=True
)
def load_model(self, path):
self.udpparsernet.load_state_dict(
torch.load('{}/udpparsernet.pth'.format(path), map_location=device))
self.target_pose_encoder.load_state_dict(
torch.load('{}/target_pose_encoder.pth'.format(path), map_location=device))
self.shader.load_state_dict(
torch.load('{}/shader.pth'.format(path), map_location=device))
self.rgbadecodernet.load_state_dict(
torch.load('{}/rgbadecodernet.pth'.format(path), map_location=device))
def save_model(self, ite_num):
self._save_pth(self.udpparsernet,
model_name="udpparsernet", ite_num=ite_num)
self._save_pth(self.target_pose_encoder,
model_name="target_pose_encoder", ite_num=ite_num)
self._save_pth(self.shader,
model_name="shader", ite_num=ite_num)
self._save_pth(self.rgbadecodernet,
model_name="rgbadecodernet", ite_num=ite_num)
def _save_pth(self, net, model_name, ite_num):
args = self.args
to_save = None
if args.distributed:
if args.local_rank == 0:
to_save = net.module.state_dict()
else:
to_save = net.state_dict()
if to_save:
model_dir = os.path.join(
os.getcwd(), 'saved_models', args.model_name + os.sep + "checkpoints" + os.sep + "itr_%d" % (ite_num)+os.sep)
os.makedirs(model_dir, exist_ok=True)
torch.save(to_save, model_dir + model_name + ".pth")
def train(self):
self.udpparsernet.train()
self.target_pose_encoder.train()
self.shader.train()
self.rgbadecodernet.train()
def eval(self):
self.udpparsernet.eval()
self.target_pose_encoder.eval()
self.shader.eval()
self.rgbadecodernet.eval()
def device(self):
self.udpparsernet.to(device)
self.target_pose_encoder.to(device)
self.shader.to(device)
self.rgbadecodernet.to(device)
def data_norm_image(self, data):
with torch.cuda.amp.autocast(enabled=False):
for name in ["character_labels", "pose_label"]:
if name in data:
data[name] = data[name].to(
device, non_blocking=True).float()
for name in ["pose_images", "pose_mask", "character_images", "character_masks"]:
if name in data:
data[name] = data[name].to(
device, non_blocking=True).float() / 255.0
if "pose_images" in data:
data["num_pose_images"] = data["pose_images"].shape[1]
data["num_samples"] = data["pose_images"].shape[0]
if "character_images" in data:
data["num_character_images"] = data["character_images"].shape[1]
data["num_samples"] = data["character_images"].shape[0]
if "pose_images" in data and "character_images" in data:
assert (data["pose_images"].shape[0] ==
data["character_images"].shape[0])
return data
def reset_charactersheet(self):
self.parser_ckpt = None
def model_step(self, data, training=False):
self.eval()
with torch.cuda.amp.autocast(enabled=False):
pred = {}
if self.parser_ckpt:
pred["parser"] = self.parser_ckpt
else:
pred = self.character_parser_forward(data, pred)
self.parser_ckpt = pred["parser"]
pred = self.pose_parser_sc_forward(data, pred)
pred = self.shader_pose_encoder_forward(data, pred)
pred = self.shader_forward(data, pred)
return pred
def shader_forward(self, data, pred={}):
assert ("num_character_images" in data), "ERROR: No Character Sheet input."
character_images_rgb_nmchw, num_character_images = data[
"character_images"], data["num_character_images"]
# build x_reference_rgb_a_sudp in the draw call
shader_character_a_nmchw = data["character_masks"]
assert torch.any(torch.mean(shader_character_a_nmchw, (0, 2, 3, 4)) >= 0.95) == False, "ERROR: \
No transparent area found in the image, PLEASE separate the foreground of input character sheets.\
The website waifucutout.com is recommended to automatically cut out the foreground."
if shader_character_a_nmchw is None:
shader_character_a_nmchw = pred["parser"]["pred"][:, :, 3:4, :, :]
x_reference_rgb_a = torch.cat([shader_character_a_nmchw[:, :, :, :, :] * character_images_rgb_nmchw[:, :, :, :, :],
shader_character_a_nmchw[:,
:, :, :, :],
], 2)
assert (x_reference_rgb_a.shape[2] == self.DIM_SHADER_REFERENCE)
# build x_reference_features in the draw call
x_reference_features = pred["parser"]["features"]
# run cinn shader
retdic = self.shader(
pred["shader"]["target_pose_features"], x_reference_rgb_a, x_reference_features)
pred["shader"].update(retdic)
# decode rgba
if True:
dec_out = self.rgbadecodernet(
retdic["y_last_remote_features"])
y_weighted_x_reference_RGB = dec_out[:, 0:3, :, :]
y_weighted_mask_A = dec_out[:, 3:4, :, :]
y_weighted_warp_decoded_rgba = torch.cat(
(y_weighted_x_reference_RGB*y_weighted_mask_A, y_weighted_mask_A), dim=1
)
assert(y_weighted_warp_decoded_rgba.shape[1] == 4)
assert(
y_weighted_warp_decoded_rgba.shape[-1] == character_images_rgb_nmchw.shape[-1])
# apply decoded mask to decoded rgb, finishing the draw call
pred["shader"]["y_weighted_warp_decoded_rgba"] = y_weighted_warp_decoded_rgba
return pred
def character_parser_forward(self, data, pred={}):
if not("num_character_images" in data and "character_images" in data):
return pred
pred["parser"] = {"pred": None} # create output
inputs_rgb_nmchw, num_samples, num_character_images = data[
"character_images"], data["num_samples"], data["num_character_images"]
inputs_rgb_fchw = inputs_rgb_nmchw.view(
(num_samples * num_character_images, inputs_rgb_nmchw.shape[2], inputs_rgb_nmchw.shape[3], inputs_rgb_nmchw.shape[4]))
encoder_out, features = self.udpparsernet(
(inputs_rgb_fchw-0.6)/0.2970)
pred["parser"]["features"] = [features_out.view(
(num_samples, num_character_images, features_out.shape[1], features_out.shape[2], features_out.shape[3])) for features_out in features]
if (encoder_out is not None):
pred["parser"]["pred"] = UDPClip(encoder_out.view(
(num_samples, num_character_images, encoder_out.shape[1], encoder_out.shape[2], encoder_out.shape[3])))
return pred
def pose_parser_sc_forward(self, data, pred={}):
if not("num_pose_images" in data and "pose_images" in data):
return pred
inputs_aug_rgb_nmchw, num_samples, num_pose_images = data[
"pose_images"], data["num_samples"], data["num_pose_images"]
inputs_aug_rgb_fchw = inputs_aug_rgb_nmchw.view(
(num_samples * num_pose_images, inputs_aug_rgb_nmchw.shape[2], inputs_aug_rgb_nmchw.shape[3], inputs_aug_rgb_nmchw.shape[4]))
encoder_out, _ = self.udpparsernet(
(inputs_aug_rgb_fchw-0.6)/0.2970)
encoder_out = encoder_out.view(
(num_samples, num_pose_images, encoder_out.shape[1], encoder_out.shape[2], encoder_out.shape[3]))
# apply sigmoid after eval loss
pred["pose_parser"] = {"pred":UDPClip(encoder_out)}
return pred
def shader_pose_encoder_forward(self, data, pred={}):
pred["shader"] = {} # create output
if "pose_images" in data:
pose_images_rgb_nmchw = data["pose_images"]
target_gt_rgb = pose_images_rgb_nmchw[:, 0, :, :, :]
pred["shader"]["target_gt_rgb"] = target_gt_rgb
shader_target_a = None
if "pose_mask" in data:
pred["shader"]["target_gt_a"] = data["pose_mask"]
shader_target_a = data["pose_mask"]
shader_target_sudp = None
if "pose_label" in data:
shader_target_sudp = data["pose_label"][:, :3, :, :]
if self.args.test_pose_use_parser_udp:
shader_target_sudp = None
if shader_target_sudp is None:
shader_target_sudp = pred["pose_parser"]["pred"][:, 0:3, :, :]
if shader_target_a is None:
shader_target_a = pred["pose_parser"]["pred"][:, 3:4, :, :]
# build x_target_sudp_a in the draw call
x_target_sudp_a = torch.cat((
shader_target_sudp*shader_target_a,
shader_target_a
), 1)
pred["shader"].update({
"x_target_sudp_a": x_target_sudp_a
})
_, features = self.target_pose_encoder(
(x_target_sudp_a-0.6)/0.2970, ret_parser_out=False)
pred["shader"]["target_pose_features"] = features
return pred |