Spaces:
Runtime error
Runtime error
File size: 3,390 Bytes
1ceb75c 04d40e5 1ceb75c cbefc90 1ceb75c 72aa08a 1ceb75c 72aa08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# CoNR: Collaborative Neural Rendering using Anime Character Sheets
---
## [HomePage](https://conr.ml) | Colab | [arXiv](https://arxiv.org/abs/2207.05378)
![image](images/MAIN.png)
## Introduction
This project is the official implement of [Collaborative Neural Rendering using Anime Character Sheets](https://arxiv.org/abs/2207.05378), which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our [HomePage](https://conr.ml).
Contributors:
## Usage
#### Prerequisites
* NVIDIA GPU + CUDA + CUDNN
* Python 3.6
#### Installation
* Clone this repository
```bash
git clone https://github.com/megvii-research/CoNR
```
* Dependencies
To install all the dependencies, please run the following commands.
```bash
cd CoNR
pip install -r requirements.txt
```
* Download Weights
Download weights from Google Drive. Alternatively, you can download from [Baidu Netdisk](https://pan.baidu.com/s/1U11iIk-DiJodgCveSzB6ig?pwd=RDxc) (password:RDxc).
```
mkdir weights && cd weights
wget https://drive.google.com/file/d/1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx/view?usp=sharing
wget https://drive.google.com/file/d/1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0/view?usp=sharing
wget https://drive.google.com/file/d/1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i/view?usp=sharing
wget https://drive.google.com/file/d/19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm/view?usp=sharing
```
#### Prepare inputs
We prepared two Ultra-Dense Pose sequences for two characters, you can generate more UDPs via 3D models and motions.
[Baidu Netdisk](https://pan.baidu.com/s/1hWvz4iQXnVTaTSb6vu1NBg?pwd=RDxc) (password:RDxc)
```
# for short hair girl
wget https://drive.google.com/file/d/11HMSaEkN__QiAZSnCuaM6GI143xo62KO/view?usp=sharing
unzip short_hair.zip
mv short_hair/ poses/
# for double ponytail girl
wget https://drive.google.com/file/d/1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q/view?usp=sharing
unzip double_ponytail.zip
mv double_ponytail/ poses/
```
We provide sample inputs of anime character sheets, you can also draw more by yourself.
```
# for short hair girl
wget https://drive.google.com/file/d/1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT/view?usp=sharing
unzip short_hair_images.zip
mv short_hair_images/ character_sheet/
# for double ponytail girl
wget https://drive.google.com/file/d/1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc/view?usp=sharing
unzip double_ponytail_images.zip
mv double_ponytail_images/ character_sheet/
```
#### RUN!
We provide two ways: with web UI or via terminal.
* with web UI (powered by [Streamlit](https://streamlit.io/))
```
streamlit run streamlit.py --server_port=8501
```
then open your browser and visit `localhost:8501`, follow the instructions to genarate video.
* via terminal
```
mkdir {dir_to_save_result}
python3 -m torch.distributed.launch \
--nproc_per_node=1 train.py --mode=test \
--world_size=1 --dataloaders=2 \
--test_input_poses_images={dir_to_poses} \
--test_input_person_images={dir_to_character_sheet} \
--test_output_dir={dir_to_save_result} \
--test_checkpoint_dir={dir_to_weights}
ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30
```
## Citation
```bibtex
@article{lin2022conr,
title={Collaborative Neural Rendering using Anime Character Sheets},
author={Lin, Zuzeng and Huang, Ailin and Huang, Zhewei and Hu, Chen and Zhou, Shuchang},
journal={arXiv preprint arXiv:2207.05378},
year={2022}
}
```
|