Spaces:
Runtime error
Runtime error
File size: 11,847 Bytes
c34ed4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
import os
cv2.setNumThreads(1)
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
class RandomResizedCropWithAutoCenteringAndZeroPadding (object):
def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), center_jitter=(0.1, 0.1), size_from_alpha_mask=True):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
assert isinstance(scale, tuple)
assert isinstance(ratio, tuple)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
raise ValueError("Scale and ratio should be of kind (min, max)")
self.size_from_alpha_mask = size_from_alpha_mask
self.scale = scale
self.ratio = ratio
assert isinstance(center_jitter, tuple)
self.center_jitter = center_jitter
def __call__(self, sample):
imidx, image = sample['imidx'], sample["image_np"]
if "labels" in sample:
label = sample["labels"]
else:
label = None
im_h, im_w = image.shape[:2]
if self.size_from_alpha_mask and image.shape[2] == 4:
# compute bbox from alpha mask
bbox_left, bbox_top, bbox_w, bbox_h = cv2.boundingRect(
(image[:, :, 3] > 0).astype(np.uint8))
else:
bbox_left, bbox_top = 0, 0
bbox_h, bbox_w = image.shape[:2]
if bbox_h <= 1 and bbox_w <= 1:
sample["bad"] = 0
else:
# detect too small image here
alpha_varea = np.sum((image[:, :, 3] > 0).astype(np.uint8))
image_area = image.shape[0]*image.shape[1]
if alpha_varea/image_area < 0.001:
sample["bad"] = alpha_varea
# detect bad image
if "bad" in sample:
# baddata_dir = os.path.join(os.getcwd(), 'test_data', "baddata" + os.sep)
# save_output(str(imidx)+".png",image,label,baddata_dir)
bbox_h, bbox_w = image.shape[:2]
sample["image_np"] = np.zeros(
[self.output_size[0], self.output_size[1], image.shape[2]], dtype=image.dtype)
if label is not None:
sample["labels"] = np.zeros(
[self.output_size[0], self.output_size[1], 4], dtype=label.dtype)
return sample
# compute default area by making sure output_size contains bbox_w * bbox_h
jitter_h = np.random.uniform(-bbox_h *
self.center_jitter[0], bbox_h*self.center_jitter[0])
jitter_w = np.random.uniform(-bbox_w *
self.center_jitter[1], bbox_w*self.center_jitter[1])
# h/w
target_aspect_ratio = np.exp(
np.log(self.output_size[0]/self.output_size[1]) +
np.random.uniform(np.log(self.ratio[0]), np.log(self.ratio[1]))
)
source_aspect_ratio = bbox_h/bbox_w
if target_aspect_ratio < source_aspect_ratio:
# same w, target has larger h, use h to align
target_height = bbox_h * \
np.random.uniform(self.scale[0], self.scale[1])
virtual_h = int(
round(target_height))
virtual_w = int(
round(target_height / target_aspect_ratio)) # h/w
else:
# same w, source has larger h, use w to align
target_width = bbox_w * \
np.random.uniform(self.scale[0], self.scale[1])
virtual_h = int(
round(target_width * target_aspect_ratio)) # h/w
virtual_w = int(
round(target_width))
# print("required aspect ratio:", target_aspect_ratio)
virtual_top = int(round(bbox_top + jitter_h - (virtual_h-bbox_h)/2))
virutal_left = int(round(bbox_left + jitter_w - (virtual_w-bbox_w)/2))
if virtual_top < 0:
top_padding = abs(virtual_top)
crop_top = 0
else:
top_padding = 0
crop_top = virtual_top
if virutal_left < 0:
left_padding = abs(virutal_left)
crop_left = 0
else:
left_padding = 0
crop_left = virutal_left
if virtual_top+virtual_h > im_h:
bottom_padding = abs(im_h-(virtual_top+virtual_h))
crop_bottom = im_h
else:
bottom_padding = 0
crop_bottom = virtual_top+virtual_h
if virutal_left+virtual_w > im_w:
right_padding = abs(im_w-(virutal_left+virtual_w))
crop_right = im_w
else:
right_padding = 0
crop_right = virutal_left+virtual_w
# crop
image = image[crop_top:crop_bottom, crop_left: crop_right]
if label is not None:
label = label[crop_top:crop_bottom, crop_left: crop_right]
# pad
if top_padding + bottom_padding + left_padding + right_padding > 0:
padding = ((top_padding, bottom_padding),
(left_padding, right_padding), (0, 0))
# print("padding", padding)
image = np.pad(image, padding, mode='constant')
if label is not None:
label = np.pad(label, padding, mode='constant')
if image.shape[0]/image.shape[1] - virtual_h/virtual_w > 0.001:
print("virtual aspect ratio:", virtual_h/virtual_w)
print("image aspect ratio:", image.shape[0]/image.shape[1])
assert (image.shape[0]/image.shape[1] - virtual_h/virtual_w < 0.001)
sample["crop"] = np.array(
[im_h, im_w, crop_top, crop_bottom, crop_left, crop_right, top_padding, bottom_padding, left_padding, right_padding, image.shape[0], image.shape[1]])
# resize
if self.output_size[1] != image.shape[1] or self.output_size[0] != image.shape[0]:
if self.output_size[1] > image.shape[1] and self.output_size[0] > image.shape[0]:
# enlarging
image = cv2.resize(
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_LINEAR)
else:
# shrinking
image = cv2.resize(
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_AREA)
if label is not None:
label = cv2.resize(label, (self.output_size[1], self.output_size[0]),
interpolation=cv2.INTER_NEAREST_EXACT)
assert image.shape[0] == self.output_size[0] and image.shape[1] == self.output_size[1]
sample['imidx'], sample["image_np"] = imidx, image
if label is not None:
assert label.shape[0] == self.output_size[0] and label.shape[1] == self.output_size[1]
sample["labels"] = label
return sample
class FileDataset(Dataset):
def __init__(self, image_names_list, fg_img_lbl_transform=None, shader_pose_use_gt_udp_test=True, shader_target_use_gt_rgb_debug=False):
self.image_name_list = image_names_list
self.fg_img_lbl_transform = fg_img_lbl_transform
self.shader_pose_use_gt_udp_test = shader_pose_use_gt_udp_test
self.shader_target_use_gt_rgb_debug = shader_target_use_gt_rgb_debug
def __len__(self):
return len(self.image_name_list)
def get_gt_from_disk(self, idx, imname, read_label):
if read_label:
# read label
with open(imname, mode="rb") as bio:
if imname.find(".npz") > 0:
label_np = np.load(bio, allow_pickle=True)[
'i'].astype(np.float32, copy=False)
else:
label_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(bio.read(
), np.uint8), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH | cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA)
assert (4 == label_np.shape[2])
# fake image out of valid label
image_np = (label_np*255).clip(0, 255).astype(np.uint8, copy=False)
# assemble sample
sample = {'imidx': np.array(
[idx]), "image_np": image_np, "labels": label_np}
else:
# read image as unit8
with open(imname, mode="rb") as bio:
image_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(
bio.read(), np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA)
# image_np = Image.open(bio)
# image_np = np.array(image_np)
assert (3 == len(image_np.shape))
if (image_np.shape[2] == 4):
mask_np = image_np[:, :, 3:4]
image_np = (image_np[:, :, :3] *
(image_np[:, :, 3][:, :, np.newaxis]/255.0)).clip(0, 255).astype(np.uint8, copy=False)
elif (image_np.shape[2] == 3):
# generate a fake mask
# Fool-proofing
mask_np = np.ones(
(image_np.shape[0], image_np.shape[1], 1), dtype=np.uint8)*255
print("WARN: transparent background is preferred for image ", imname)
else:
raise ValueError("weird shape of image ", imname, image_np)
image_np = np.concatenate((image_np, mask_np), axis=2)
sample = {'imidx': np.array(
[idx]), "image_np": image_np}
# apply fg_img_lbl_transform
if self.fg_img_lbl_transform:
sample = self.fg_img_lbl_transform(sample)
if "labels" in sample:
# return UDP as 4chn XYZV float tensor
sample["labels"] = torch.from_numpy(
sample["labels"].transpose((2, 0, 1)))
assert (sample["labels"].dtype == torch.float32)
if "image_np" in sample:
# return image as 3chn RGB uint8 tensor and 1chn A uint8 tensor
sample["mask"] = torch.from_numpy(
sample["image_np"][:, :, 3:4].transpose((2, 0, 1)))
assert (sample["mask"].dtype == torch.uint8)
sample["image"] = torch.from_numpy(
sample["image_np"][:, :, :3].transpose((2, 0, 1)))
assert (sample["image"].dtype == torch.uint8)
del sample["image_np"]
return sample
def __getitem__(self, idx):
sample = {
'imidx': np.array([idx])}
target = self.get_gt_from_disk(
idx, imname=self.image_name_list[idx][0], read_label=self.shader_pose_use_gt_udp_test)
if self.shader_target_use_gt_rgb_debug:
sample["pose_images"] = torch.stack([target["image"]])
sample["pose_mask"] = target["mask"]
elif self.shader_pose_use_gt_udp_test:
sample["pose_label"] = target["labels"]
sample["pose_mask"] = target["mask"]
else:
sample["pose_images"] = torch.stack([target["image"]])
if "crop" in target:
sample["pose_crop"] = target["crop"]
character_images = []
character_masks = []
for i in range(1, len(self.image_name_list[idx])):
source = self.get_gt_from_disk(
idx, self.image_name_list[idx][i], read_label=False)
character_images.append(source["image"])
character_masks.append(source["mask"])
character_images = torch.stack(character_images)
character_masks = torch.stack(character_masks)
sample.update({
"character_images": character_images,
"character_masks": character_masks
})
# do not make fake labels in inference
return sample |