Spaces:
Runtime error
Runtime error
File size: 12,012 Bytes
7c30e0a c34ed4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
This code was mostly taken from backbone-unet by mkisantal:
https://github.com/mkisantal/backboned-unet/blob/master/backboned_unet/unet.py
"""
import torch
import torch.nn as nn
from torchvision import models
from torch.nn import functional as F
import torch.nn as nn
import torch
from torchvision import models
class AdaptiveConcatPool2d(nn.Module):
"""
Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`.
Source: Fastai. This code was taken from the fastai library at url
https://github.com/fastai/fastai/blob/master/fastai/layers.py#L176
"""
def __init__(self, sz=None):
"Output will be 2*sz or 2 if sz is None"
super().__init__()
self.output_size = sz or 1
self.ap = nn.AdaptiveAvgPool2d(self.output_size)
self.mp = nn.AdaptiveMaxPool2d(self.output_size)
def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)
class MyNorm(nn.Module):
def __init__(self, num_channels):
super(MyNorm, self).__init__()
self.norm = nn.InstanceNorm2d(
num_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
def forward(self, x):
x = self.norm(x)
return x
def resnet_fastai(model, pretrained, url, replace_first_layer=None, replace_maxpool_layer=None, progress=True, map_location=None, **kwargs):
cut = -2
s = model(pretrained=False, **kwargs)
if replace_maxpool_layer is not None:
s.maxpool = replace_maxpool_layer
if replace_first_layer is not None:
body = nn.Sequential(replace_first_layer, *list(s.children())[1:cut])
else:
body = nn.Sequential(*list(s.children())[:cut])
if pretrained:
state = torch.hub.load_state_dict_from_url(url,
progress=progress, map_location=map_location)
if replace_first_layer is not None:
for each in list(state.keys()).copy():
if each.find("0.0.") == 0:
del state[each]
body_tail = nn.Sequential(body)
ret = body_tail.load_state_dict(state, strict=False)
return body
def get_backbone(name, pretrained=True, map_location=None):
""" Loading backbone, defining names for skip-connections and encoder output. """
first_layer_for_4chn = nn.Conv2d(
4, 64, kernel_size=7, stride=2, padding=3, bias=False)
max_pool_layer_replace = nn.Conv2d(
64, 64, kernel_size=3, stride=2, padding=1, bias=False)
# loading backbone model
if name == 'resnet18':
backbone = models.resnet18(pretrained=pretrained)
if name == 'resnet18-4':
backbone = models.resnet18(pretrained=pretrained)
backbone.conv1 = first_layer_for_4chn
elif name == 'resnet34':
backbone = models.resnet34(pretrained=pretrained)
elif name == 'resnet50':
backbone = models.resnet50(pretrained=False, norm_layer=MyNorm)
backbone.maxpool = max_pool_layer_replace
elif name == 'resnet101':
backbone = models.resnet101(pretrained=pretrained)
elif name == 'resnet152':
backbone = models.resnet152(pretrained=pretrained)
elif name == 'vgg16':
backbone = models.vgg16_bn(pretrained=pretrained).features
elif name == 'vgg19':
backbone = models.vgg19_bn(pretrained=pretrained).features
elif name == 'resnet18_danbo-4':
backbone = resnet_fastai(models.resnet18, url="https://github.com/RF5/danbooru-pretrained/releases/download/v0.1/resnet18-3f77756f.pth",
pretrained=pretrained, map_location=map_location, norm_layer=MyNorm, replace_first_layer=first_layer_for_4chn)
elif name == 'resnet50_danbo':
backbone = resnet_fastai(models.resnet50, url="https://github.com/RF5/danbooru-pretrained/releases/download/v0.1/resnet50-13306192.pth",
pretrained=pretrained, map_location=map_location, norm_layer=MyNorm, replace_maxpool_layer=max_pool_layer_replace)
elif name == 'densenet121':
backbone = models.densenet121(pretrained=True).features
elif name == 'densenet161':
backbone = models.densenet161(pretrained=True).features
elif name == 'densenet169':
backbone = models.densenet169(pretrained=True).features
elif name == 'densenet201':
backbone = models.densenet201(pretrained=True).features
else:
raise NotImplemented(
'{} backbone model is not implemented so far.'.format(name))
#print(backbone)
# specifying skip feature and output names
if name.startswith('resnet'):
feature_names = [None, 'relu', 'layer1', 'layer2', 'layer3']
backbone_output = 'layer4'
elif name == 'vgg16':
# TODO: consider using a 'bridge' for VGG models, there is just a MaxPool between last skip and backbone output
feature_names = ['5', '12', '22', '32', '42']
backbone_output = '43'
elif name == 'vgg19':
feature_names = ['5', '12', '25', '38', '51']
backbone_output = '52'
elif name.startswith('densenet'):
feature_names = [None, 'relu0', 'denseblock1',
'denseblock2', 'denseblock3']
backbone_output = 'denseblock4'
elif name == 'unet_encoder':
feature_names = ['module1', 'module2', 'module3', 'module4']
backbone_output = 'module5'
else:
raise NotImplemented(
'{} backbone model is not implemented so far.'.format(name))
if name.find('_danbo') > 0:
feature_names = [None, '2', '4', '5', '6']
backbone_output = '7'
return backbone, feature_names, backbone_output
class UpsampleBlock(nn.Module):
# TODO: separate parametric and non-parametric classes?
# TODO: skip connection concatenated OR added
def __init__(self, ch_in, ch_out=None, skip_in=0, use_bn=True, parametric=False):
super(UpsampleBlock, self).__init__()
self.parametric = parametric
ch_out = ch_in/2 if ch_out is None else ch_out
# first convolution: either transposed conv, or conv following the skip connection
if parametric:
# versions: kernel=4 padding=1, kernel=2 padding=0
self.up = nn.ConvTranspose2d(in_channels=ch_in, out_channels=ch_out, kernel_size=(4, 4),
stride=2, padding=1, output_padding=0, bias=(not use_bn))
self.bn1 = MyNorm(ch_out) if use_bn else None
else:
self.up = None
ch_in = ch_in + skip_in
self.conv1 = nn.Conv2d(in_channels=ch_in, out_channels=ch_out, kernel_size=(3, 3),
stride=1, padding=1, bias=(not use_bn))
self.bn1 = MyNorm(ch_out) if use_bn else None
self.relu = nn.ReLU(inplace=True)
# second convolution
conv2_in = ch_out if not parametric else ch_out + skip_in
self.conv2 = nn.Conv2d(in_channels=conv2_in, out_channels=ch_out, kernel_size=(3, 3),
stride=1, padding=1, bias=(not use_bn))
self.bn2 = MyNorm(ch_out) if use_bn else None
def forward(self, x, skip_connection=None):
x = self.up(x) if self.parametric else F.interpolate(x, size=None, scale_factor=2, mode='bilinear',
align_corners=None)
if self.parametric:
x = self.bn1(x) if self.bn1 is not None else x
x = self.relu(x)
if skip_connection is not None:
x = torch.cat([x, skip_connection], dim=1)
if not self.parametric:
x = self.conv1(x)
x = self.bn1(x) if self.bn1 is not None else x
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x) if self.bn2 is not None else x
x = self.relu(x)
return x
class ResEncUnet(nn.Module):
""" U-Net (https://arxiv.org/pdf/1505.04597.pdf) implementation with pre-trained torchvision backbones."""
def __init__(self,
backbone_name,
pretrained=True,
encoder_freeze=False,
classes=21,
decoder_filters=(512, 256, 128, 64, 32),
parametric_upsampling=True,
shortcut_features='default',
decoder_use_instancenorm=True,
map_location=None
):
super(ResEncUnet, self).__init__()
self.backbone_name = backbone_name
self.backbone, self.shortcut_features, self.bb_out_name = get_backbone(
backbone_name, pretrained=pretrained, map_location=map_location)
shortcut_chs, bb_out_chs = self.infer_skip_channels()
if shortcut_features != 'default':
self.shortcut_features = shortcut_features
# build decoder part
self.upsample_blocks = nn.ModuleList()
# avoiding having more blocks than skip connections
decoder_filters = decoder_filters[:len(self.shortcut_features)]
decoder_filters_in = [bb_out_chs] + list(decoder_filters[:-1])
num_blocks = len(self.shortcut_features)
for i, [filters_in, filters_out] in enumerate(zip(decoder_filters_in, decoder_filters)):
self.upsample_blocks.append(UpsampleBlock(filters_in, filters_out,
skip_in=shortcut_chs[num_blocks-i-1],
parametric=parametric_upsampling,
use_bn=decoder_use_instancenorm))
self.final_conv = nn.Conv2d(
decoder_filters[-1], classes, kernel_size=(1, 1))
if encoder_freeze:
self.freeze_encoder()
def freeze_encoder(self):
""" Freezing encoder parameters, the newly initialized decoder parameters are remaining trainable. """
for param in self.backbone.parameters():
param.requires_grad = False
def forward(self, *input, ret_parser_out=True):
""" Forward propagation in U-Net. """
x, features = self.forward_backbone(*input)
output_feature = [x]
for skip_name, upsample_block in zip(self.shortcut_features[::-1], self.upsample_blocks):
skip_features = features[skip_name]
if skip_features is not None:
output_feature.append(skip_features)
if ret_parser_out:
x = upsample_block(x, skip_features)
if ret_parser_out:
x = self.final_conv(x)
# apply sigmoid later
else:
x = None
return x, output_feature
def forward_backbone(self, x):
""" Forward propagation in backbone encoder network. """
features = {None: None} if None in self.shortcut_features else dict()
for name, child in self.backbone.named_children():
x = child(x)
if name in self.shortcut_features:
features[name] = x
if name == self.bb_out_name:
break
return x, features
def infer_skip_channels(self):
""" Getting the number of channels at skip connections and at the output of the encoder. """
if self.backbone_name.find("-4") > 0:
x = torch.zeros(1, 4, 224, 224)
else:
x = torch.zeros(1, 3, 224, 224)
has_fullres_features = self.backbone_name.startswith(
'vgg') or self.backbone_name == 'unet_encoder'
# only VGG has features at full resolution
channels = [] if has_fullres_features else [0]
# forward run in backbone to count channels (dirty solution but works for *any* Module)
for name, child in self.backbone.named_children():
x = child(x)
if name in self.shortcut_features:
channels.append(x.shape[1])
if name == self.bb_out_name:
out_channels = x.shape[1]
break
return channels, out_channels
|