File size: 8,719 Bytes
c34ed4d
 
 
 
 
 
 
 
 
 
 
 
 
 
f287a32
c34ed4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4537523
 
 
c34ed4d
 
 
 
 
 
 
 
 
 
 
 
 
4537523
 
 
265964a
4537523
c34ed4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import time
from datetime import datetime
from distutils.util import strtobool

import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from data_loader import (FileDataset,
                         RandomResizedCropWithAutoCenteringAndZeroPadding)
from torch.utils.data.distributed import DistributedSampler
from conr import CoNR
from tqdm import tqdm

def data_sampler(dataset, shuffle, distributed):

    if distributed:
        return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle)

    if shuffle:
        return torch.utils.data.RandomSampler(dataset)

    else:
        return torch.utils.data.SequentialSampler(dataset)

def save_output(image_name, inputs_v, d_dir=".", crop=None):
    import cv2

    inputs_v = inputs_v.detach().squeeze()
    input_np = torch.clamp(inputs_v*255, 0, 255).byte().cpu().numpy().transpose(
        (1, 2, 0))
    # cv2.setNumThreads(1)
    out_render_scale = cv2.cvtColor(input_np, cv2.COLOR_RGBA2BGRA)
    if crop is not None:
        crop = crop.cpu().numpy()[0]
        output_img = np.zeros((crop[0], crop[1], 4), dtype=np.uint8)
        before_resize_scale = cv2.resize(
            out_render_scale, (crop[5]-crop[4]+crop[8]+crop[9], crop[3]-crop[2]+crop[6]+crop[7]), interpolation=cv2.INTER_AREA)  # w,h
        output_img[crop[2]:crop[3], crop[4]:crop[5]] = before_resize_scale[crop[6]:before_resize_scale.shape[0] -
                                                                           crop[7], crop[8]:before_resize_scale.shape[1]-crop[9]]
    else:
        output_img = out_render_scale
    cv2.imwrite(d_dir+"/"+image_name.split(os.sep)[-1]+'.png',
                output_img
                )


def test():
    source_names_list = []
    for name in sorted(os.listdir(args.test_input_person_images)):
        thissource = os.path.join(args.test_input_person_images, name)
        if os.path.isfile(thissource):
            source_names_list.append(thissource)
        if os.path.isdir(thissource):
            print("skipping empty folder :"+thissource)

    image_names_list = []
    for name in sorted(os.listdir(args.test_input_poses_images)):
        thistarget = os.path.join(args.test_input_poses_images, name)
        if os.path.isfile(thistarget):
            image_names_list.append([thistarget, *source_names_list])
        if os.path.isdir(thistarget):
            print("skipping folder :"+thistarget)
    print(image_names_list)

    print("---building models")
    conrmodel = CoNR(args)
    conrmodel.load_model(path=args.test_checkpoint_dir)
    conrmodel.dist()
    infer(args, conrmodel, image_names_list)


def infer(args, humanflowmodel, image_names_list):
    print("---test images: ", len(image_names_list))
    test_salobj_dataset = FileDataset(image_names_list=image_names_list,
                                      fg_img_lbl_transform=transforms.Compose([
                                          RandomResizedCropWithAutoCenteringAndZeroPadding(
                                              (args.dataloader_imgsize, args.dataloader_imgsize), scale=(1, 1), ratio=(1.0, 1.0), center_jitter=(0.0, 0.0)
                                          )]),
                                      shader_pose_use_gt_udp_test=not args.test_pose_use_parser_udp,
                                      shader_target_use_gt_rgb_debug=False
                                      )
    sampler = data_sampler(test_salobj_dataset, shuffle=False,
                           distributed=args.distributed)
    train_data = DataLoader(test_salobj_dataset,
                            batch_size=1,
                            shuffle=False,sampler=sampler, 
                            num_workers=args.dataloaders)

    # start testing

    train_num = train_data.__len__()
    time_stamp = time.time()
    prev_frame_rgb = []
    prev_frame_a = []
    
    pbar = tqdm(range(train_num), ncols=100)
    for i, data in enumerate(train_data):
        data_time_interval = time.time() - time_stamp
        time_stamp = time.time()
        with torch.no_grad():
            data["character_images"] = torch.cat(
                [data["character_images"], *prev_frame_rgb], dim=1)
            data["character_masks"] = torch.cat(
                [data["character_masks"], *prev_frame_a], dim=1)
            data = humanflowmodel.data_norm_image(data)
            pred = humanflowmodel.model_step(data, training=False)
            # remember to call  humanflowmodel.reset_charactersheet() if you change character .

        train_time_interval = time.time() - time_stamp
        time_stamp = time.time()
        if args.local_rank == 0:
            pbar.set_description(f"Epoch {i}/{train_num}")
            pbar.set_postfix({"data_time": data_time_interval, "train_time":train_time_interval})
            pbar.update(1)

        with torch.no_grad():

            if args.test_output_video:
                pred_img = pred["shader"]["y_weighted_warp_decoded_rgba"]
                save_output(
                    str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir, crop=data["pose_crop"])
            
            if args.test_output_udp:
                pred_img = pred["shader"]["x_target_sudp_a"]
                save_output(
                    "udp_"+str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir)


def build_args():
    parser = argparse.ArgumentParser()
    # distributed learning settings
    parser.add_argument("--world_size", type=int, default=1,
                        help='world size')
    parser.add_argument("--local_rank", type=int, default=0,
                        help='local_rank, DON\'T change it')

    # model settings
    parser.add_argument('--dataloader_imgsize', type=int, default=256,
                        help='Input image size of the model')
    parser.add_argument('--batch_size', type=int, default=4,
                        help='minibatch size')
    parser.add_argument('--model_name', default='model_result',
                        help='Name of the experiment')
    parser.add_argument('--dataloaders', type=int, default=2,
                        help='Num of dataloaders')
    parser.add_argument('--mode', default="test", choices=['train', 'test'],
                        help='Training mode or Testing mode')

    # i/o settings
    parser.add_argument('--test_input_person_images',
                        type=str, default="./character_sheet/",
                        help='Directory to input character sheets')
    parser.add_argument('--test_input_poses_images', type=str,
                        default="./test_data/",
                        help='Directory to input UDP sequences or pose images')
    parser.add_argument('--test_checkpoint_dir', type=str,
                        default='./weights/',
                        help='Directory to model weights')
    parser.add_argument('--test_output_dir', type=str,
                        default="./results/",
                        help='Directory to output images')

    # output content settings
    parser.add_argument('--test_output_video', type=strtobool, default=True,
                        help='Whether to output the final result of CoNR, \
                              images will be output to test_output_dir while True.')
    parser.add_argument('--test_output_udp', type=strtobool, default=False,
                        help='Whether to output UDP generated from UDP detector, \
                              this is meaningful ONLY when test_input_poses_images \
                              is not UDP sequences but pose images. Meanwhile, \
                              test_pose_use_parser_udp need to be True')

    # UDP detector settings
    parser.add_argument('--test_pose_use_parser_udp',
                        type=strtobool, default=False, 
                        help='Whether to use UDP detector to generate UDP from pngs, \
                              pose input MUST be pose images instead of UDP sequences \
                              while True')

    args = parser.parse_args()

    args.distributed = (args.world_size > 1)
    if args.local_rank == 0:
        print("batch_size:", args.batch_size, flush=True)
    if args.distributed:
        if args.local_rank == 0:
            print("world_size: ", args.world_size)
        torch.distributed.init_process_group(
            backend="nccl", init_method="env://", world_size=args.world_size)
        torch.cuda.set_device(args.local_rank)
        torch.backends.cudnn.benchmark = True
    else:
        args.local_rank = 0
 
    return args


if __name__ == "__main__":
    args = build_args()
    test()