CoNR / model /backbone.py
p2oileen's picture
initial commit
c34ed4d
raw
history blame
11.9 kB
import torch
import torch.nn as nn
from torchvision import models
from torch.nn import functional as F
import torch.nn as nn
import torch
from torchvision import models
class AdaptiveConcatPool2d(nn.Module):
"""
Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`.
Source: Fastai. This code was taken from the fastai library at url
https://github.com/fastai/fastai/blob/master/fastai/layers.py#L176
"""
def __init__(self, sz=None):
"Output will be 2*sz or 2 if sz is None"
super().__init__()
self.output_size = sz or 1
self.ap = nn.AdaptiveAvgPool2d(self.output_size)
self.mp = nn.AdaptiveMaxPool2d(self.output_size)
def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)
class MyNorm(nn.Module):
def __init__(self, num_channels):
super(MyNorm, self).__init__()
self.norm = nn.InstanceNorm2d(
num_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
def forward(self, x):
x = self.norm(x)
return x
def resnet_fastai(model, pretrained, url, replace_first_layer=None, replace_maxpool_layer=None, progress=True, map_location=None, **kwargs):
cut = -2
s = model(pretrained=False, **kwargs)
if replace_maxpool_layer is not None:
s.maxpool = replace_maxpool_layer
if replace_first_layer is not None:
body = nn.Sequential(replace_first_layer, *list(s.children())[1:cut])
else:
body = nn.Sequential(*list(s.children())[:cut])
if pretrained:
state = torch.hub.load_state_dict_from_url(url,
progress=progress, map_location=map_location)
if replace_first_layer is not None:
for each in list(state.keys()).copy():
if each.find("0.0.") == 0:
del state[each]
body_tail = nn.Sequential(body)
ret = body_tail.load_state_dict(state, strict=False)
return body
def get_backbone(name, pretrained=True, map_location=None):
""" Loading backbone, defining names for skip-connections and encoder output. """
first_layer_for_4chn = nn.Conv2d(
4, 64, kernel_size=7, stride=2, padding=3, bias=False)
max_pool_layer_replace = nn.Conv2d(
64, 64, kernel_size=3, stride=2, padding=1, bias=False)
# loading backbone model
if name == 'resnet18':
backbone = models.resnet18(pretrained=pretrained)
if name == 'resnet18-4':
backbone = models.resnet18(pretrained=pretrained)
backbone.conv1 = first_layer_for_4chn
elif name == 'resnet34':
backbone = models.resnet34(pretrained=pretrained)
elif name == 'resnet50':
backbone = models.resnet50(pretrained=False, norm_layer=MyNorm)
backbone.maxpool = max_pool_layer_replace
elif name == 'resnet101':
backbone = models.resnet101(pretrained=pretrained)
elif name == 'resnet152':
backbone = models.resnet152(pretrained=pretrained)
elif name == 'vgg16':
backbone = models.vgg16_bn(pretrained=pretrained).features
elif name == 'vgg19':
backbone = models.vgg19_bn(pretrained=pretrained).features
elif name == 'resnet18_danbo-4':
backbone = resnet_fastai(models.resnet18, url="https://github.com/RF5/danbooru-pretrained/releases/download/v0.1/resnet18-3f77756f.pth",
pretrained=pretrained, map_location=map_location, norm_layer=MyNorm, replace_first_layer=first_layer_for_4chn)
elif name == 'resnet50_danbo':
backbone = resnet_fastai(models.resnet50, url="https://github.com/RF5/danbooru-pretrained/releases/download/v0.1/resnet50-13306192.pth",
pretrained=pretrained, map_location=map_location, norm_layer=MyNorm, replace_maxpool_layer=max_pool_layer_replace)
elif name == 'densenet121':
backbone = models.densenet121(pretrained=True).features
elif name == 'densenet161':
backbone = models.densenet161(pretrained=True).features
elif name == 'densenet169':
backbone = models.densenet169(pretrained=True).features
elif name == 'densenet201':
backbone = models.densenet201(pretrained=True).features
else:
raise NotImplemented(
'{} backbone model is not implemented so far.'.format(name))
#print(backbone)
# specifying skip feature and output names
if name.startswith('resnet'):
feature_names = [None, 'relu', 'layer1', 'layer2', 'layer3']
backbone_output = 'layer4'
elif name == 'vgg16':
# TODO: consider using a 'bridge' for VGG models, there is just a MaxPool between last skip and backbone output
feature_names = ['5', '12', '22', '32', '42']
backbone_output = '43'
elif name == 'vgg19':
feature_names = ['5', '12', '25', '38', '51']
backbone_output = '52'
elif name.startswith('densenet'):
feature_names = [None, 'relu0', 'denseblock1',
'denseblock2', 'denseblock3']
backbone_output = 'denseblock4'
elif name == 'unet_encoder':
feature_names = ['module1', 'module2', 'module3', 'module4']
backbone_output = 'module5'
else:
raise NotImplemented(
'{} backbone model is not implemented so far.'.format(name))
if name.find('_danbo') > 0:
feature_names = [None, '2', '4', '5', '6']
backbone_output = '7'
return backbone, feature_names, backbone_output
class UpsampleBlock(nn.Module):
# TODO: separate parametric and non-parametric classes?
# TODO: skip connection concatenated OR added
def __init__(self, ch_in, ch_out=None, skip_in=0, use_bn=True, parametric=False):
super(UpsampleBlock, self).__init__()
self.parametric = parametric
ch_out = ch_in/2 if ch_out is None else ch_out
# first convolution: either transposed conv, or conv following the skip connection
if parametric:
# versions: kernel=4 padding=1, kernel=2 padding=0
self.up = nn.ConvTranspose2d(in_channels=ch_in, out_channels=ch_out, kernel_size=(4, 4),
stride=2, padding=1, output_padding=0, bias=(not use_bn))
self.bn1 = MyNorm(ch_out) if use_bn else None
else:
self.up = None
ch_in = ch_in + skip_in
self.conv1 = nn.Conv2d(in_channels=ch_in, out_channels=ch_out, kernel_size=(3, 3),
stride=1, padding=1, bias=(not use_bn))
self.bn1 = MyNorm(ch_out) if use_bn else None
self.relu = nn.ReLU(inplace=True)
# second convolution
conv2_in = ch_out if not parametric else ch_out + skip_in
self.conv2 = nn.Conv2d(in_channels=conv2_in, out_channels=ch_out, kernel_size=(3, 3),
stride=1, padding=1, bias=(not use_bn))
self.bn2 = MyNorm(ch_out) if use_bn else None
def forward(self, x, skip_connection=None):
x = self.up(x) if self.parametric else F.interpolate(x, size=None, scale_factor=2, mode='bilinear',
align_corners=None)
if self.parametric:
x = self.bn1(x) if self.bn1 is not None else x
x = self.relu(x)
if skip_connection is not None:
x = torch.cat([x, skip_connection], dim=1)
if not self.parametric:
x = self.conv1(x)
x = self.bn1(x) if self.bn1 is not None else x
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x) if self.bn2 is not None else x
x = self.relu(x)
return x
class ResEncUnet(nn.Module):
""" U-Net (https://arxiv.org/pdf/1505.04597.pdf) implementation with pre-trained torchvision backbones."""
def __init__(self,
backbone_name,
pretrained=True,
encoder_freeze=False,
classes=21,
decoder_filters=(512, 256, 128, 64, 32),
parametric_upsampling=True,
shortcut_features='default',
decoder_use_instancenorm=True,
map_location=None
):
super(ResEncUnet, self).__init__()
self.backbone_name = backbone_name
self.backbone, self.shortcut_features, self.bb_out_name = get_backbone(
backbone_name, pretrained=pretrained, map_location=map_location)
shortcut_chs, bb_out_chs = self.infer_skip_channels()
if shortcut_features != 'default':
self.shortcut_features = shortcut_features
# build decoder part
self.upsample_blocks = nn.ModuleList()
# avoiding having more blocks than skip connections
decoder_filters = decoder_filters[:len(self.shortcut_features)]
decoder_filters_in = [bb_out_chs] + list(decoder_filters[:-1])
num_blocks = len(self.shortcut_features)
for i, [filters_in, filters_out] in enumerate(zip(decoder_filters_in, decoder_filters)):
self.upsample_blocks.append(UpsampleBlock(filters_in, filters_out,
skip_in=shortcut_chs[num_blocks-i-1],
parametric=parametric_upsampling,
use_bn=decoder_use_instancenorm))
self.final_conv = nn.Conv2d(
decoder_filters[-1], classes, kernel_size=(1, 1))
if encoder_freeze:
self.freeze_encoder()
def freeze_encoder(self):
""" Freezing encoder parameters, the newly initialized decoder parameters are remaining trainable. """
for param in self.backbone.parameters():
param.requires_grad = False
def forward(self, *input, ret_parser_out=True):
""" Forward propagation in U-Net. """
x, features = self.forward_backbone(*input)
output_feature = [x]
for skip_name, upsample_block in zip(self.shortcut_features[::-1], self.upsample_blocks):
skip_features = features[skip_name]
if skip_features is not None:
output_feature.append(skip_features)
if ret_parser_out:
x = upsample_block(x, skip_features)
if ret_parser_out:
x = self.final_conv(x)
# apply sigmoid later
else:
x = None
return x, output_feature
def forward_backbone(self, x):
""" Forward propagation in backbone encoder network. """
features = {None: None} if None in self.shortcut_features else dict()
for name, child in self.backbone.named_children():
x = child(x)
if name in self.shortcut_features:
features[name] = x
if name == self.bb_out_name:
break
return x, features
def infer_skip_channels(self):
""" Getting the number of channels at skip connections and at the output of the encoder. """
if self.backbone_name.find("-4") > 0:
x = torch.zeros(1, 4, 224, 224)
else:
x = torch.zeros(1, 3, 224, 224)
has_fullres_features = self.backbone_name.startswith(
'vgg') or self.backbone_name == 'unet_encoder'
# only VGG has features at full resolution
channels = [] if has_fullres_features else [0]
# forward run in backbone to count channels (dirty solution but works for *any* Module)
for name, child in self.backbone.named_children():
x = child(x)
if name in self.shortcut_features:
channels.append(x.shape[1])
if name == self.bb_out_name:
out_channels = x.shape[1]
break
return channels, out_channels