CoNR / model /decoder_small.py
p2oileen's picture
initial commit
c34ed4d
raw
history blame
1.73 kB
from torch import nn
import torch.nn.functional as F
import torch
class ResBlock2d(nn.Module):
def __init__(self, in_features, kernel_size, padding):
super(ResBlock2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.norm1 = nn.Conv2d(
in_channels=in_features, out_channels=in_features, kernel_size=1)
self.norm2 = nn.Conv2d(
in_channels=in_features, out_channels=in_features, kernel_size=1)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out, inplace=True)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out, inplace=True)
out = self.conv2(out)
out += x
return out
class RGBADecoderNet(nn.Module):
def __init__(self, c=64, out_planes=4, num_bottleneck_blocks=1):
super(RGBADecoderNet, self).__init__()
self.conv_rgba = nn.Sequential(nn.Conv2d(c, out_planes, kernel_size=3, stride=1,
padding=1, dilation=1, bias=True))
self.bottleneck = torch.nn.Sequential()
for i in range(num_bottleneck_blocks):
self.bottleneck.add_module(
'r' + str(i), ResBlock2d(c, kernel_size=(3, 3), padding=(1, 1)))
def forward(self, features_weighted_mask_atfeaturesscale_list=[]):
return torch.sigmoid(self.conv_rgba(self.bottleneck(features_weighted_mask_atfeaturesscale_list.pop(0))))