Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
backwarp_tenGrid = {} | |
def warp(tenInput, tenFlow): | |
with torch.cuda.amp.autocast(enabled=False): | |
k = (str(tenFlow.device), str(tenFlow.size())) | |
if k not in backwarp_tenGrid: | |
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view( | |
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) | |
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view( | |
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) | |
backwarp_tenGrid[k] = torch.cat( | |
[tenHorizontal, tenVertical], 1).to(device) | |
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), | |
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1) | |
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) | |
if tenInput.dtype != g.dtype: | |
g = g.to(tenInput.dtype) | |
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True) | |
# "zeros" "border" | |
def warp_features(inp, flow, ): | |
groups = flow.shape[1]//2 # NCHW | |
samples = inp.shape[0] | |
h = inp.shape[2] | |
w = inp.shape[3] | |
assert(flow.shape[0] == samples and flow.shape[2] | |
== h and flow.shape[3] == w) | |
chns = inp.shape[1] | |
chns_per_group = chns // groups | |
assert(flow.shape[1] % 2 == 0) | |
assert(chns % groups == 0) | |
inp = inp.contiguous().view(samples*groups, chns_per_group, h, w) | |
flow = flow.contiguous().view(samples*groups, 2, h, w) | |
feat = warp(inp, flow) | |
feat = feat.view(samples, chns, h, w) | |
return feat | |
def flow2rgb(flow_map_np): | |
h, w, _ = flow_map_np.shape | |
rgb_map = np.ones((h, w, 3)).astype(np.float32)/2.0 | |
normalized_flow_map = np.concatenate( | |
(flow_map_np[:, :, 0:1]/h/2.0, flow_map_np[:, :, 1:2]/w/2.0), axis=2) | |
rgb_map[:, :, 0] += normalized_flow_map[:, :, 0] | |
rgb_map[:, :, 1] -= 0.5 * \ | |
(normalized_flow_map[:, :, 0] + normalized_flow_map[:, :, 1]) | |
rgb_map[:, :, 2] += normalized_flow_map[:, :, 1] | |
return (rgb_map.clip(0, 1)*255.0).astype(np.uint8) | |